
corso di laurea magistrale in matematica

A C AT E G O RY O F A R R O W A L G E B R A S
F O R M O D I F I E D R E A L I Z A B I L I T Y

relatore

benno van den berg

correlatore

silvio ghilardi

tesi di

umberto tarantino

anno accademico 2023/2024

This thesis was submitted in partial fulfillment of the requirements for the
degree of Master of Science in Mathematics at the University of Milan.

This thesis was written during a period abroad at the Institute for Logic,
Language and Computation, University of Amsterdam.

A C K N O W L E D G E M E N T S

First and foremost, I want to express my gratitude towards Benno van
den Berg, who generously and patiently supervised me during the writing
of this thesis, unaware of the trials and tribulations of supervising an
Erasmus+ student from Italy. Our hours-long meetings marked the flow of
time during my months in Amsterdam, and I would always leave them
full of new ideas and motivation. I am forever grateful.

Thanks to Silvio Ghilardi, Sandra Mantovani and Vincenzo Marra, for
supporting me in every possible way.

Thanks to Jaap van Oosten, for the interest and support showed in me
and my academic career and for the number of fruitful conversations on
this thesis. I will always cherish my visits to Utrecht and the opportunity I
have had to be his teaching assistant.

Thanks to Sam van Gool, for believing in me more than I sometimes do
myself. I look forward to starting my PhD under his supervision this fall.

Grazie a mia mamma e a mio papà, per avermi supportato emotivamente
ed economicamente e per avermi insegnato che nella vita “ci vuole logica”.
Grazie a mia zia Antonella, forse in parte responsabile della mia passione
per la matematica, e a mio zio Pieraldo. Grazie a mia cugina Stella, e al
resto della mia famiglia che non avrei mai abbastanza spazio per nominare.

Grazie a Gioele, il mio migliore amico, senza il quale non sarei la persona
che sono oggi. Ad Ali, Cam, Filo, Marta e Rita. Ad Alessia, con la promessa
che prima o poi riusciremo a vederci più spesso. Ad Alice e al gruppo di
musical. A Sonia e Giulia, che ci sono sin dall’inizio. A Caterina e Alberto.
A Nico, Marghe, Gio, e tutti i miei amici di via Saldini. A Simone, per gli
innumerevoli consigli sul mondo dell’università e della ricerca.

Thanks to my personal Greek embassy: Orestis the Philosopher, Orestis
the Mathematician, and Spyros the Clown. You have been the best thing
that happened to me in Amsterdam and I am truly glad I found you.
Thanks to Jonathan, for always listening to me babbling about arrow
algebras, and to all my friends in the Master of Logic.

iii

C O N T E N T S

1 Introduction 1

1.1 Intuitionism . 1

1.2 Realizability . 2

1.3 Topos theory . 3

1.4 Realizability toposes . 4

1.5 In this thesis . 6

2 Triposes and toposes 7

2.1 Preorder-enriched categories 7

2.2 Triposes . 9

2.3 Geometric morphisms . 15

3 Partial combinatory algebras 20

3.1 Partial combinatory algebras 20

3.2 Morphisms of partial combinatory algebras 24

3.3 Realizability triposes . 26

3.4 Transformations of realizability triposes 27

4 Arrow algebras 30

4.1 Arrow algebras . 30

4.2 Examples . 39

5 Implicative morphisms 41

5.1 Implicative morphisms . 41

5.2 Examples . 47

6 Arrow triposes 51

6.1 Left exact transformations of arrow triposes 52

6.2 Geometric morphisms of arrow triposes 56

6.3 Inclusions and surjections . 59

6.4 Examples . 66

7 Arrow algebras for modified realizability 72

iv

7.1 The Sierpiński construction 73

7.2 The modification of an arrow algebra 75

8 Arrow assemblies 84

8.1 The category of arrow assemblies 84

8.2 From arrow assemblies to the arrow topos 91

8.3 Constant objects . 96

8.4 Functors between categories of assemblies 97

Conclusion 99

v

1
I N T R O D U C T I O N

Have you ever heard a category theorist say, “I want to prove that
this diagram commutes: let’s suppose it doesn’t”?

andrej bauer

This thesis aims to develop the theory of arrow algebras as a framework
to study realizability toposes from a more concrete, ‘algebraic’, point of
view which can also take localic toposes into account.

In this introduction, I will briefly present the main characters of this
story, mostly sketching their development throughout the last century so
as to have an overview of the field of research this thesis is concerned
with. Since the mathematics of the following chapters will be written in a
constructive metatheory, Section 1.1 starts by describing intuitionistic logic
as an unformalized philosophy regarding mathematics. In Section 1.2,
I will then introduce realizability, providing some formalization for the
previous ideas. Some intuitive topos theory, and some motivation for the
study thereof, is sketched in Section 1.3, which paves the way to Section 1.4
where the characters start to interact with each other. Finally, in Section 1.5,
I will explain how this thesis is structured and what my contribution to
the subject is.

1.1 intuitionism

Intuitionism was originally developed by Luitzen Egbertus Jan Brouwer,
at the beginning of the last century. Arising as a consequence of Brouwer’s
philosophy of mathematics, the heart of intuitionistic logic was in the
rejection of the Law of Excluded Middle: that is, the principle according to
which, for any statement ϕ, either ϕ or its negation ¬ϕ must be true. As
the Law of Excluded Middle is equivalent to that of Double Negation
Elimination, the principle according to which ¬¬ϕ entails ϕ for any

1

1.2 realizability 2

statement ϕ, to reject it means then to refuse proofs by contradiction: this
reflects Brouwer’s constructive ideology on mathematical entities, hence
placing intuitionism in the more general realm of constructive mathematics.

As Brouwer notoriously abhorred any kind of formalism, the task of
codifying a logical system for intuitionistic mathematics was carried out by
Arend Heyting and Andrey Kolmogorov. The main challenge in developing
formal intuitionistic logic lay in understanding how Brouwer conceived
the logical symbols, and hence what it meant to give an intuitionistic proof
of a statement. According to what would later come to be known as the
Brouwer-Heyting-Komogorov (BHK) interpretation of the connectives, a proof
of – for instance – an implication ϕ→ ψ consists of a procedure to convert
proofs of ϕ into proofs of ψ. Clearly, this ‘interpretation’ still begged for
an explanation itself, so as to formalize the primitive concepts of proof and
procedure, fundamental in Brouwer’s constructive vision of mathematics.
For an account of constructive mathematics and intuitionism, we refer to
the monograph [37], while [1] conversationally introduces the classical
reader to what mathematics can look like constructively.

1.2 realizability

In the seminal paper [22], in 1945, Stephen Cole Kleene started the field
of realizability in the attempt to make explicit the algorithmic content
of constructive proofs. To link intuitionism with the idea of ‘effective
computability’, Kleene employed the theory of partial recursive functions
which he himself had developed. The key idea was to associate to every
sentence ϕ in the language of arithmetic a set of natural numbers which
realize ϕ, in such a way that “n realizes ϕ” can be understood as “n
provides evidence for the constructive truth of ϕ”. Kleene’s realizability
offered a perfectly formal explanation of the BHK interpretation, hence
allowing any classical mathematician to study intuitionistic logic.

If a sentence is provable from the axioms of arithmetic using intuition-
istic logic1, then it is realized. On the other hand, there exist sentences
which are not provable, or even classically refutable, but which are re-
alized: sentences of this kind are therefore consistent with constructive
arithmetic, which means that they can be added without contradiction

1 That is, the system known as Heyting arithmetic, constructive analog of Peano arithmetic.

1.3 topos theory 3

sometimes yielding counterintuitive results. A key example is given by
Church’s Thesis, stating that every function N → N is recursive:

∀x∃yϕ(x,y) → ∃z∀x(z · x↓∧ϕ(x, z · x))

where z · x represents the output of the z-th partial recursive function2

on input x, and z · x↓ abbreviates “z · x is defined”, both of which can be
expressed within Heyting arithmetic itself. Over the years, realizability
has therefore been used to prove the consistency of classically refutable
principles, and to establish properties of formal systems for arithmetic,
analysis and set theory, both intuitionistic and even classical: a historical
survey of realizability in the twentieth century is given by [33].

The abstraction of the properties of N as the domain of realizers led
Solomon Feferman to define partial combinatory algebras, introduced in [9],
so as to ‘do realizability’ over more general structures. Partial combinatory
algebras are abstract models of computation which capture the idea of a
common domain for both the algorithms and the inputs/outputs to such
algorithms: crucially, these algorithms are allowed to be partially defined,
as it happens for partial recursive functions.

A variant of Kleene’s number realizability which we will consider in this
thesis, as the title suggests, is modified realizability, introduced by Georg
Kreisel in [24]. The key idea behind modified realizability is to associate to
every sentence a nonempty set of potential realizers, and a possibly empty
subset of actual realizers. This version of realizability can be used to show
the consistency of the Independence of Premise principle, that is:

(¬ϕ(y) → ∃xψ(x,y)) → ∃x(¬ϕ(y) → ψ(x,y))

or to show that Markov’s principle, that is:

(∀x(ϕ(x)∨¬ϕ(x))∧¬¬∃xϕ(x)) → ∃xϕ(x)

is not provable within Heyting arithmetic.

1.3 topos theory

Topos theory originated around 1960 from Alexander Grothendieck’s
work in algebraic geometry, which led to the notion of a Grothendieck topos
as the category of sheaves on a site, generalizing the well-known notion

2 Assuming fixed an enumeration thereof.

1.4 realizability toposes 4

of sheaves on a topological space. Then, around 1970, William Lawvere
and Myles Tierney identified a number of elementary properties that
Grothendieck toposes shared with the category of sets, which yielded the
more general notion of an elementary topos – from now on, simply topos.

Toposes possess enough categorical structure to allow for an interpre-
tation of typed higher-order logic, meaning that they can be regarded as
alternate ‘universes’ in which to do mathematics instead of the standard
universe of sets and functions. Indeed, many traditional constructions of set
theory (such as powersets and sets of functions) can be carried out in every
topos, and by reasoning internally we can prove facts about them as if we
were talking about sets. Crucially, however, the reasoning must be carried
out intuitionistically, as the internal logic of a topos need not be classical.3

What this means is that classically impossible situations in ‘our universe’,
the standard topos, may therefore be true elsewhere: for example, there
exist toposes in which there are only countably many functions N → N,
or where every function R → R is continuous, or where R is uncountable
(in the sense that there is no surjection N → R) but there is an injection
R → N. Classical textbooks on topos theory are [26, 5, 19]; see [4], instead,
for a survey focused on toposes as alternate mathematical universes.

1.4 realizability toposes

In the ’70s, topos theory allowed logicians to encompass semantical
ideas which were by then fully established, such as Cohen forcing for
set theory or Kripke models for intuitionistic logic, under the concept of
Heyting-valued semantics. Indeed, in 1973, Denis Higgs [12, 13] had proved
how the category of H-valued sets, for a complete Heyting algebra H, is
equivalent to the familiar topos of sheaves over H, which allows us to
identify Heyting-valued semantics with the theory of localic toposes.

The construction of the topos of H-valued sets was split in [10] into
two logically meaningful steps. First, H gives rise to a model of typed
intuitionistic higher-order logic without equality, where types are sets
and predicates of type X are functions X → H, which are arranged in a
Heyting algebra themselves with the pointwise order. Then, one formally
‘adds equality’ to the language in the form of an H-valued symmetric and

3 Besides, this is also often independent of whether classical logic is assumed to hold in the
standard topos.

1.4 realizability toposes 5

transitive relation for each type, which yields the topos of H-valued sets. In
[16], Martin Hyland recognized that a similar two-step construction could
be carried out considering the powerset of natural numbers P(N) in place
of H, but with order and Heyting structure on sets of predicates governed
by recursive function application. This resulted in the effective topos Eff, as
it was named, which originated a whole new strand of research connecting
realizability with topos theory. Indeed, it turned out that a sentence in
the language of arithmetic is true in Eff if and only if it is realizable in
Kleene’s sense: in other words, the logic of the natural numbers inside the
effective topos is exactly Kleene’s realizability.

In [17], Martin Hyland, Peter Johnstone and Andrew Pitts showed how
the first step of the construction could be greatly generalized, in particular
in such a way as to recognize both the localic and the realizability examples
as instances of the same construction. In doing so, they introduced the con-
cept of a tripos, acronym for “topos-representing indexed partially-ordered
set”, which was the subject of Pitts’ PhD thesis [35]. Many variations of
realizability have been lifted to the framework of triposes and toposes,
which allowed us to shed new light on their inter-relations and to study
them systematically by studying the toposes which embodied them in
their internal logic – that is, realizability toposes. Modified realizability, in
particular, was first studied topos-theoretically by Robin Grayson in [11],
who defined what is now called Grayson’s modified realizability topos Mod;
later references include [30] and [3].

Realizability toposes possess a number of peculiar properties also from a
purely topos-theoretical perspective, starting with the fact that they consti-
tute the prime example of elementary toposes which are not Grothendieck.4

Realizability toposes can therefore be fruitfully exploited to find models
for theories which classically do not have any, sometimes not even in any
Grothendieck topos: over the years, this has found applications in areas
such as synthetic domain theory, algebraic set theory and intuitionistic
nonstandard arithmetic.

A great deal of research on realizability toposes has been carried out
about functors between them, especially in relation with suitable notions
of morphisms between partial combinatory algebras. A first such notion,
known as applicative morphisms, was introduced in [25], then extended
in [15] through the concept of computational density, which allowed us to

4 Of course, besides the much less interesting category of finite sets.

1.5 in this thesis 6

study geometric morphisms of realizability toposes from the point of view
of the underlying partial combinatory algebras.

1.5 in this thesis

As said at the beginning, this thesis is concerned with the search for a
concrete unifying framework to study toposes arising from triposes in a
systematic way. Earlier work in this direction includes basic combinatorial
objects [14], implicative algebras [28, 29] and evidenced frames [8]. Arrow
algebras were introduced in [2] based on Marcus Briët’s Master thesis
[6], where it is shown how they are precisely the intermediate structure
between partial combinatory algebras and the associated realizability tri-
poses. In this thesis, we further this idea by defining appropriate categories
of arrow algebras which perfectly factor through the construction of re-
alizability triposes starting from partial combinatory algebras, but also
encompassing the localic cases.

The outline of the thesis is as follows. In Chapter 2 and Chapter 3, we
review the necessary background on triposes, toposes, and partial combi-
natory algebras which we will employ in later chapters. In Chapter 4, we
describe arrow algebras as structures inducing triposes. The core of the
thesis, as well as the main contribution to the field of research, is consti-
tuted by Chapter 5 and Chapter 6, where we introduce various notions
of morphisms between arrow algebras and see how they correspond to
morphisms between the associated triposes, in such a way as to recover
both the localic and the realizability examples as particular instances. As
an example of an application, in Chapter 7, we will employ the developed
machinery to study modified realizability from the point of view of arrow
algebras. Finally, Chapter 8, introduces the study of assemblies in the
context of arrow algebras, generalizing the traditional notion of assemblies
for partial combinatory algebras.

2
T R I P O S E S A N D T O P O S E S

The notion of tripos was introduced in [17] and [35] as a categorical
model of typed higher-order intuitionistic logic without equality, arising
from the presentation of the topos of sheaves on a complete Heyting
algebra H as the category of H-valued sets. Through the tripos-to-topos
construction, every tripos gives rise to a topos in a process which essentially
amounts to formally adding equality to the language. In this chapter, we
review the necessary background on tripos theory, mainly following the
account given in [34]; we will assume the reader to be familiar with topos
theory.

2.1 preorder-enriched categories

First, we need to establish our terminology for 2-dimensional categories.
Following [39], with 2-category we mean a 2-dimensional category which is
also an ordinary category, meaning that the unit and associativity laws for
1-cells hold on the nose. Instead, we speak of bicategories for 2-dimensional
categories where the axioms of an ordinary category only hold up to
(coherent) invertible 2-cells.

We can now introduce the most important kind of 2-dimensional cate-
gory in the context of this thesis.

Definition 2.1. A preorder-enriched category is a locally small 2-category
with at most one 2-cell between any pair of 1-cells.1

Explicitly, this means that a preorder-enriched category C is a category
endowed with a preorder structure on each homset C(A,B), in such a way
that the composition map

C(B,C)× C(A,B) → C(A,C)

is order-preserving for all A,B,C ∈ C.

1 As in [39], we will also speak improperly of preorder-enriched bicategories for bicategories
whose homcategories are preorders.

7

2.1 preorder-enriched categories 8

In a preorder-enriched category, a morphism f : X→ Y is left adjoint to a
morphism g : Y → X – equivalently, g is right adjoint to f – if idX ⩽ gf and
fg ⩽ idY , in which case we write f ⊣ g. Two parallel morphisms f,g are
isomorphic if f ⩽ g and g ⩽ f, in which case we write f ≃ g.

Example 2.2. Every category is preorder-enriched with respect to the
discrete order.

Example 2.3. The category Preord of preordered sets and monotone func-
tions is preorder-enriched with respect to the pointwise order.

Definition 2.4. Let C and D be preorder-enriched categories. A pseudofunc-
tor F : C → D maps every object X in C to some object F(X) in D and every
morphism f : X → Y in C to some morphism F(f) : F(X) → F(Y) in D, in
such a way that:

i. the association C(X, Y) → D(F(X), F(Y)) is order-preserving for all
objects X, Y in C;

ii. F(idX) ≃ idF(X) for all objects X in C;

iii. F(gf) ≃ F(g)F(f) for all composable arrows f,g in C.

In particular, F is a 2-functor2 if it is an actual functor, i.e. if the equalities
in (ii) and (iii) hold on the nose rather than up to isomorphism.

Definition 2.5. Let F and G be pseudofunctors C → D. A pseudonatural
transformation Φ : F⇒ G is given by a morphism ΦX : F(X) → G(X) in D
for every object X in C in such a way that, for all morphisms f : X→ Y in
C, the square

F(X) G(X)

F(Y) G(Y)

ΦX

F(f) G(f)

ΦY

commutes up to isomorphism.

Remark 2.6. We will also have to deal with pseudomonads on a preorder-
enriched category C, that is, the datum of a pseudofunctor T : C → C and
two pseudonatural transformations η : idT ⇒ T and µ : T2 ⇒ T satisfying
the usual monad laws up to (coherent) invertible modifications. We will
not go into any detail about the theory of pseudomonads, which will serve
us only en passant: for reference, see [18].

2 This is called an enriched functor in [34].

2.2 triposes 9

We will then consider pseudoalgebras over a pseudomonad T , that is, ob-
jects X endowed with a morphism T(X) → X in C satisfying the usual alge-
bra laws up to isomorphism. In complete analogy with the 1-dimensional
case, pseudoalgebras determine the Kleisli bicategory Kl(T) of the pseu-
domonad T : the critical point here is precisely that Kl(T) is not necessarily
a (2-)category, but we will see how this will not really be an issue for our
purposes.

The following example of a preorder-enriched category plays a key role
in the theory of triposes.

Definition 2.7. A Heyting prealgebra is a preorder whose poset reflection
is a Heyting algebra; in other words, it is a (small) thin cartesian closed
category which admits finite coproducts.

A morphism of Heyting prealgebras is a monotone function which is a
morphism of Heyting algebras between the poset reflections of domain
and codomain; in other words, it is a functor preserving finite products
and coproducts and exponential objects.

We denote with HeytPre the category of Heyting prealgebras, which is
preorder-enriched with respect to the pointwise order.

2.2 triposes

As the only triposes considered in this thesis will be Set-based, we
restrict ourselves to triposes over a fixed elementary topos E.

triposes and transformations of triposes

Definition 2.8. An E-tripos is a pseudofunctor P : Eop → HeytPre satisfying
the following axioms.

i. For every morphism f : X→ Y in E, the map f∗ := P(f) : P(Y) → P(X)

has both a left adjoint ∃f and a right adjoint ∀f in Preord.3 Moreover,
these adjoints satisfy the Beck-Chevalley condition, which means that

3 That is, ∃f and ∀f need not preserve the Heyting structure.

2.2 triposes 10

for every pullback square in E as the left one, the induced square on
the right commutes up to isomorphism in Preord:4

X Y

Z W

f

g

k

h
⌟

P(X) P(Y)

P(Z) P(W)

∀g

f∗

∀h

k∗

ii. There exists a generic element in P, which is an element σ ∈ P(Σ) for
some object Σ in E with the property that, for every object X in E
and every element ϕ ∈ P(X), there exists a morphism [ϕ] : X→ Σ in
E such that ϕ and [ϕ]∗(σ) are isomorphic elements of P(X).

An E-tripos P such that P(X) = E(X,Σ) for some object Σ in E is said to
be canonically presented.

Intuitively, one should think of E as the category of types and terms of a
many-sorted higher-order intuitionistic language L, and each P(X) can be
thought of a set of nonstandard predicates on X. The preorder on each P(X)
can then be interpreted as a entailment with respect to an L-theory T , hence
we denote it as ⊢X; in particular, isomorphism in P(X) is consequently
denoted as ⊣⊢X.

Remark 2.9. The fact that f∗ preserves the Heyting structure implies the
Frobenius condition, that is, for every morphism f : X → Y in E, ψ ∈ P(X)
and ϕ ∈ P(Y):

∃f(ψ∧ f∗(ϕ)) ⊣⊢Y ∃f(ψ)∧ϕ

Example 2.10. A trivial example of an E-tripos is given by SubE : Eop →
HeytAlg. Indeed, for any morphism f : X→ Y in E it is well-known that the
pullback map f∗ : SubE(Y) → SubE(X) is a morphism of Heyting algebras
and has adjoints satisfying the Beck-Chevalley condition; a generic element
is given by (the subobject of Ω represented by) the subobject classifier
t : 1→ Ω.

Example 2.11. Let H be a complete Heyting algebra. We define the Set-
tripos of H-valued predicates PH as follows.

For any set X, we let PH(X) := Set(X,H), which is a Heyting algebra
under pointwise order and operations; for any function f : X → Y, the
precomposition map f∗ : PH(Y) → PH(X) is then a morphism of Heyting

4 This also implies the same condition for left adjoints, namely that ∃f ◦ g∗ ≃ h∗ ◦ ∃k.

2.2 triposes 11

algebras. Adjoints for f∗ are provided by completeness as, for ϕ ∈ PH(X)
and y ∈ Y:

∃f(ϕ)(y) :=
⋁︂

x∈f -1(y)

ϕ(x) ∀f(ϕ)(y) :=
⋀︂

x∈f -1(y)

ϕ(x)

which also satisfy the Beck-Chevalley condition. A generic element is
trivially given by idH ∈ PH(H).

Definition 2.12. Let P and Q be E-triposes. A transformation Φ : P → Q is
a pseudonatural transformation P ⇒ Q where P and Q are considered as
pseudofunctors Eop → Preord; in other words, this means that each com-
ponent ΦX : P(X) → Q(X) is an order-preserving map but not necessarily
a morphism of Heyting prealgebras.

Transformations P ⇒ Q can be ordered by letting Φ ⩽ Ψ if ΦX ⩽ ΨX

pointwise for all X in E, therefore making E-triposes and transformations
into a preorder-enriched category which we denote as Trip(E).

A transformation Φ : P → Q is an equivalence if there exists another
transformation Ψ : Q→ P such that Φ ◦Ψ ≃ idQ and Ψ ◦Φ ≃ idP.

Remark 2.13. Through the generic element, every E-tripos is equivalent to
a canonically presented one.

Remark 2.14. Trip(E) is essentially locally small: in fact, a transformation
Φ : P → Q is determined up to isomorphism by ΦΣ(σ) ∈ Q(Σ), since for
any ϕ ∈ P(X) we have that ΦX(ϕ) ⊣⊢X Q([ϕ])(ΦΣ(σ)).

interpretation of languages in triposes Let P be an E-tripos.
Let L be the E-typed language for higher order logic without equality, that is,

the language defined by:

– objects of E as types;

– morphisms X1 × · · · × Xn → Y in E as function symbols of type
(X1, . . . ,Xn; Y);

– a fixed set of relational symbols, each with its type (X1, . . . ,Xn).

Given such a language, terms and formulas are defined inductively in the
obvious way.

2.2 triposes 12

An interpretation of L in P is defined by assigning a predicate [R] ∈
P(X1 × · · · × Xn) to every relation symbol of type (X1, . . . ,Xn). This as-
signment extends inductively5 to all L-formulas:

– the Heyting structure on each P(X) and the maps f∗ allow us to
interpret the propositional connectives;

– the adjoints ∃π, ∀π for suitable projections π allow us to interpret
the quantifiers;

– the generic predicate and the cartesian closed structure of E allow us
to interpret higher-order logic, where in particular Σ plays the role
of the type of propositions.

With slight abuse of notation, we will typically identify a predicate ϕ ∈
P(X1 × · · · ×Xn) with a relation symbol of type (X1, . . . ,Xn) interpreted
as ϕ.

In particular, if ϕ is an L-sentence, then [ϕ] is an element of P(1): ϕ
is true in P with respect to the interpretation [·] if [ϕ] is (isomorphic to)
the top element in P(1), in which case we write P ⊨ ϕ. These notions
of interpretation and truth are sound with respect to a proof system for
typed higher-order intuitionistic logic without equality: if ϕ is provable,
then P ⊨ ϕ for every E-tripos P and every interpretation [·] of L in P.

the tripos-to-topos construction Let P be an E-tripos. We
define a category E[P] of partial equivalence relations over P as follows.

Objects of E[P] are given by pairs (X, ∼X) where X is an object of E and
∼X is an equality predicate6 for X, that is, an element of P(X×X) which is:

i. symmetric, P ⊨ ∀x, x ′(x ∼X x ′ → x ′ ∼X x);

ii. transitive, P ⊨ ∀x, x ′, x ′′(x ∼X x ′ ∧ x ′ ∼X x ′′ → x ∼X x
′′).

Morphisms (X, ∼X) → (Y, ∼Y) are isomorphism classes of functional
relations from (X, ∼X) to (Y, ∼Y), i.e. predicates F ∈ P(X× Y) which are:

i. strict, P ⊨ ∀x,y(F(x,y) → x ∼X x∧ y ∼Y y);

ii. relational, P ⊨ ∀x, x ′,y,y ′(F(x,y)∧ x ∼X x ′ ∧ y ∼Y y
′ → F(x ′,y ′));

iii. single-valued, P ⊨ ∀x,y,y ′(F(x,y)∧ F(x,y ′) → y ∼Y y
′);

5 The interested reader can find all the details in [34].
6 As we do not require reflexivity, i.e. P ⊨ ∀x(x ∼X x), we can think of the statement x ∼X x

as expressing that x exists.

2.2 triposes 13

iv. total, P ⊨ ∀x(x ∼X x→ ∃yF(x,y)).

The composition of a morphism (X, ∼X) → (Y, ∼Y) and a morphism
(Y, ∼Y) → (Z, ∼Z) represented respectively by F ∈ P(X × Y) and G ∈
P(Y ×Z) is the morphism (X, ∼X) → (Z, ∼Z) represented by the functional
relation [∃y(F(x,y)∧G(y, z)] ∈ P(X×Z), that is:

∃π13(π
∗
12(F)∧ π

∗
23(G))

where π12,π13 and π23 are the projections from X × Y × Z. For every
object (X, ∼X), the corresponding identity morphism is represented by
∼X ∈ P(X×X) itself.

Remark 2.15. Two functional relations F,G ∈ P(X× Y) are isomorphic as
soon as either F ⊢X×Y G or G ⊢X×Y F holds.

Theorem 2.16 (Pitts). E[P] is an elementary topos.

Example 2.17. E ≃ E[SubE].

Example 2.18. For a complete Heyting algebra H, Set[PH] is the topos of
H-valued sets, equivalent to the topos Sh(H) of sheaves over H.

The advantage in presenting a topos as E[P] for some E-tripos P lies
in the fact that its internal logic, which is formulated with equality, can
be reduced to the external logic of P – which was precisely missing the
equality we added in the form of equality predicates. We briefly sketch
here how this translation works for first-order logic; again, we refer to [34]
for all the details.

Let L be a typed first-order language with equality and let J·K be an
interpretation of L in E[P] in the usual sense of categorical logic, that is:

– each type σ is interpreted as an object JσK;

– each function symbol f of type (σ1, . . . ,σn; τ) is interpreted as a
morphism JfK : Jσ1K× · · · × JσnK → JτK;

– each relation symbol R of type (σ1, . . . ,σn) is interpreted as a subob-
ject JRK of Jσ1K× · · · × JσnK, and in particular = is interpreted as the
diagonal subobject.

This assignment extends to L-terms and L-formulas in the usual way. The
interpretation then reduces to the external logic of P as follows, making
use of the fact that subobjects of (X, ∼X) correspond precisely to strict
relations for (X, ∼X), i.e. predicates R ∈ P(X) such that:

2.2 triposes 14

i. P ⊨ ∀x(R(x) → x ∼X x);

ii. P ⊨ ∀x, x ′(R(x)∧ x ∼X x ′ → R(x ′)).

For simplicity of exposition, we consider all terms and formulas to be in
a common context, which can easily be obtained on the semantic side by
composing with appropriate projections.

– Given two terms t, s whose interpretations are represented by func-
tional relations F,G ∈ P(X× Y), then

Jt = sK = [∃y(F(x,y)∧G(x,y))] ∈ P(X);

– given two formulas ϕ,ψ whose interpretations are subobjects of
(X, ∼X) corresponding to strict relations R,S ∈ P(X) for (X, ∼X), then

Jϕ∧ψK = [R(x)∧ S(x)] Jϕ∨ψK = [R(x)∨ S(x)],

whereas

Jϕ→ ψK = [x ∼X x∧ (R(x) → S(x))];

– given a formula ϕ whose interpretation is the subobject of (Y, ∼Y)×
(X, ∼X) corresponding to the strict relation R ∈ P(Y ×X), then

J∃yϕK = [∃yR(y, x)]

J∀yϕK = [x ∼X x∧ ∀y(y ∼Y y→ R(x,y))].

constant objects Let P be an E-tripos and let E[P] be the associated
topos.

We define the constant object functor ∇ : E → E[P] as follows:

– for every object X in E, ∇(X) is the object (X,∃δX(⊤X)), where δX :

X → X× X is the diagonal ⟨idX, idX⟩ and ⊤X is the top element in
P(X);

– for every morphism f : X → Y in E, ∇(f) is the morphism ∇(X) →
∇(Y) represented by the functional relation ∃⟨idX,f⟩(⊤X) ∈ P(X× Y).

The fact that ∇ is well-defined and functorial is proved in [35] and [34],
but it also follows from the more general proofs carried out in Chapter 8.
Moreover, note that ∇ preserves finite limits.

Example 2.19. The constant object functor for E[SubE] is one half of the
equivalence E ≃ E[SubE].

2.3 geometric morphisms 15

Example 2.20. For a complete Heyting algebra H, ∇ : Set → Set[PH]
corresponds to the usual constant object functor ∆ : Set → Sh(H), inverse
image of the unique geometric morphism Sh(H) → Set.

The functor ∇ allows us to reconstruct P from the topos E[P], and also
to characterize E[P] by means of a universal property.

Proposition 2.21. P is equivalent to SubE[P](∇(−)).

Every regular category R admits an ex/reg completion, that is, an exact cat-
egory Rex/reg together with a fully faithful regular functor η : R → Rex/reg

such that precomposition with η realizes an equivalence of categories:7

REG(R, D) ≃ REG(Rex/reg, D)

for every exact category D. For more on ex/reg completions, we refer the
reader to [27]. The details of the construction of Rex/reg, together with the
previous proposition, yield the following characterization.

Proposition 2.22. E[P] is the ex/reg completion of its full subcategory on objects
which embed into a constant object.

2.3 geometric morphisms

The most important notion of morphism between toposes is arguably
that of geometric morphism, which by now has a vast and standard theory.
Much more niche, instead, is the theory of geometric morphisms of tri-
poses, and how they relate with geometric morphisms of toposes: with no
aim for a complete treatment, we review here the notions we will need in
the following.

geometric morphisms of triposes

Definition 2.23. Let P and Q be E-triposes. A transformation Φ : P → Q is
left exact if each component ΦX : P(X) → Q(X) preserves finite meets up to
isomorphism. We denote with Triplex(E) the wide subcategory of Trip(E)
on left exact transformations.

A transformation Φ+ : P → Q admits a right adjoint if there exists
another transformation Φ+ : Q → P such that (Φ+)X ⊣ (Φ+)X in Preord

7 We denote with REG(R, D) the category of regular functors R → D and natural transforma-
tions between them.

2.3 geometric morphisms 16

for all X in E, in which case we writeΦ+ ⊣ Φ+. IfΦ+ is moreover left exact,
then the pair (Φ+,Φ+) defines a geometric morphism Q→ P8, of which Φ+

and Φ+ constitute respectively the direct and inverse image. For practical
reasons, we denote with Tripgeo(E) the wide subcategory of Triplex(E) on
transformations having a right adjoint; a morphism P → Q in Tripgeo(E) is
hence a geometric morphism Q→ P.

Remark 2.24. Let Φ : P → Q be an equivalence and let Ψ : Q → P be
such that Φ ◦ Ψ ≃ idQ and Ψ ◦Φ ≃ idP. Then, (Φ,Ψ) : Q → P and
(Ψ,Φ) : P → Q are both geometric morphisms.

Given a geometric morphism of toposes (Φ+,Φ+) : E[Q] → E[P] between
toposes arising from E-triposes P and Q, we say that Φ+ preserves constant
objects if Φ+ ◦∇P ≃ ∇Q.

Theorem 2.25. Every geometric morphism of E-triposes Q → P induces a
geometric morphism E[Q] → E[P] whose inverse image part preserves constant
objects.

Conversely, every geometric morphism E[Q] → E[P] whose inverse image part
preserves constant objects is induced by an essentially unique geometric morphism
of E-triposes Q→ P.

Example 2.26. Let X, Y be two complete Heyting algebras regarded as
locales. Then, geometric morphisms PX → PY correspond to locale homo-
morphisms X→ Y.

More precisely, for any geometric morphism Φ = (Φ+,Φ+) : PX → PY

there exists an essentially unique morphism of locales f : X → Y such
that, regarding f as a morphism of frames f∗ : O(Y) → O(X) and letting
f∗ : O(X) → O(Y) be its right adjoint, Φ+ is given by postcomposition with
f∗ and Φ+ is given by postcomposition with f∗.

subtriposes

Definition 2.27. A geometric morphism of E-triposes Φ = (Φ+,Φ+) :

Q→ P is an inclusion if either of the following equivalent conditions hold:

– for all X in E, (Φ+)X reflects the order;

– Φ+ ◦Φ+ ≃ idQ,

8 The direction is conventional and follows the same convention for geometric morphisms
of toposes.

2.3 geometric morphisms 17

Dually, Φ is a surjection if either of the following equivalent conditions
hold:

– for all X in E, (Φ+)X reflects the order;

– Φ+ ◦Φ+ ≃ idP.

Proposition 2.28. Every geometric inclusion (resp. surjection) of E-triposes
Q→ P induces a geometric inclusion (resp. surjection) E[Q] → E[P].

Moreover, every geometric inclusion into E[P] is induced, up to equivalence, by
an essentially unique geometric inclusion of E-triposes into P.

Definition 2.29. Let SubTrip(P) be the set of subtriposes of P, that is, tri-
poses endowed with a geometric inclusions into P.9 Given two geometric
inclusions Φ : Q ↪→ P and Ψ : R ↪→ P, we write Φ ⊆ Ψ if there exists
a geometric morphism Θ : Q → R such that Φ ≃ Ψ ◦Θ – meaning that
Φ+ ≃ Ψ+ ◦Θ+ or equivalently Φ+ ≃ Θ+ ◦ Ψ+ –, in which case Θ is an
inclusion itself. This relation obviously makes SubTrip(P) into a preorder.

Two subtriposes Φ : Q ↪→ P and Ψ : R ↪→ P are equivalent if they are
isomorphic elements of SubTrip(P), that is, if both Φ ⊆ Ψ and Ψ ⊆ Φ hold;
equivalently, this means that there exists an equivalence Θ : Q→ R such
that Φ ≃ Ψ ◦Θ.

As it is known, subtoposes of a topos correspond up to equivalence to
local operators, that is, morphisms j : Ω→ Ω such that, in the internal logic
of the topos:

i. j(t) = t;

ii. jj = j;

iii. j(a∧ b) = j(a)∧ j(b),

In a topos of the form E[P] for a canonically presented E-tripos P :=

E(−,Σ), such a morphism corresponds to an essentially unique transfor-
mation Φj : P → P which is:

i. left exact;

ii. inflationary, that is, idP ⩽ Φj;

iii. idempotent, that is, ΦjΦj ≃ Φj.

Such Φj is called a closure transformation on P; conversely, every closure
transformation on P determines a local operator on E[P].

These correspondences lead to the following result.

9 For practical reasons, we identify a subtripos with the inclusion itself.

2.3 geometric morphisms 18

Theorem 2.30. Let P be a canonically presented E-tripos and let ClTrans(P) be
the set of closure transformations on P, ordered as above.

1. Geometric inclusions into P correspond, up to equivalence, to closure trans-
formations on P; in particular, there is an equivalence of preorder categories:

SubTrip(P) ≃ ClTrans(P)op

2. Every geometric inclusion of toposes into E[P] is, up to equivalence, of the
form E[Q] → E[P], induced by a geometric inclusion of E-triposes Q→ P;
in particular, there is an equivalence of preorder categories:

SubTop(E[P]) ≃ SubTrip(P)

Remark 2.31. Note then that the poset reflection of SubTrip(P) is a bounded
distributive lattice, since so is the set of subtoposes of any topos considered
up to equivalence.

In the case of a canonically presented E-tripos P := E(−,Σ), we can even
give an explicit description of the inclusion Q→ P inducing a geometric
inclusion into E[P].

Let (E[P])j be the subtopos of E[P] corresponding to a closure trans-
formation Φj : P → P and let J := (Φj)Σ(idΣ) : Σ → Σ. Then, (E[P])j is
equivalent over E to E[Pj], where Pj is the canonically presented E-tripos
defined as follows:

– the underlying pseudofunctor is still E(−,Σ);

– the order ⊢j is redefined as ϕ ⊢jI ψ if and only if ϕ ⊢I Jψ;

– the implication →j is redefined as

Σ× Σ Σ× Σ Σ
idΣ×J →

while ⊤,⊥,∧,∨ remain unchanged.10

This means that we can restate the previous theorem as follows.

Corollary 2.32. Let P be a canonically presented E-tripos.
Then, every geometric inclusion of toposes into E[P] is induced, up to equiva-

lence, by a geometric inclusion of triposes of the form:

Pj P

idΣ ◦−

J◦−

⊣

10 Left and right adjoints for f∗ can then be defined as ϕ ↦→ ∃f(ϕ) and ϕ ↦→ ∀f(Jϕ).

2.3 geometric morphisms 19

for some J : Σ→ Σ corresponding as above to a closure transformation Φj on P.

Example 2.33. Let X be a complete Heyting algebra regarded as a locale.
Then, closure transformations on PX correspond to nuclei on X, that is,
monotone, inflationary and idempotent endofunctions on the underlying
frame of X; therefore, they also correspond to sublocales of X.

Another important notion from topos theory which can be recovered at
the level of triposes is that of open and closed subtoposes.

Definition 2.34. A subtripos Φ : Q ↪→ P is open if there exists an element
α ∈ P(1) such that, for any ϕ ∈ P(I):

Φ+Φ
+(ϕ) ≃ P(!)(α) → ϕ

where ! is the unique function I→ 1.
Dually, a geometric inclusion of triposes Ψ : R ↪→ P is closed if there

exists an element β ∈ P(1) such that, for any ϕ ∈ P(I):

Ψ+Ψ
+(ϕ) ≃ ϕ∨ P(!)(β)

where ! is the unique function I→ 1.
For α = β, Φ and Ψ define each other’s complement in the lattice of

subtriposes of P considered up to equivalence.

Corollary 2.35. Through the correspondence in Theorem 2.30, open (resp. closed)
subtriposes correspond to open (resp. closed) subtoposes.

Example 2.36. Let X be a complete Heyting algebra regarded as a locale.
Then, open (resp. closed) subtriposes of PX correspond to open (resp. closed)
sublocales of X.

3
PA RT I A L C O M B I N AT O RY
A L G E B R A S

Partial combinatory algebras1 are the building blocks of realizability
toposes. Our treatment of PCAs, as already in [2], closely follows that
of [39], which allows us for the highest level of generality considered in
the literature in what concerns appropriate notions of morphisms and
their connections with morphisms of the associated toposes. We warn
the reader that the following definitions and conventions are not entirely
standard, but they turn out to be particularly convenient for our purposes.
Moreover, we will only consider PCAs over Set as base category, as we
will only develop the theory of arrow algebras over Set.

3.1 partial combinatory algebras

Definition 3.1. A partial applicative poset is a poset (P,⩽) endowed with a
partial binary map · : P× P → P called application such that if a ⩽ a ′ and
b ⩽ b ′ and a ′ · b ′ is defined, then a · b is defined as well and a · b ⩽ a ′ · b ′.
(P,⩽, ·) is total if · is a total operation, and it is discrete if ⩽ is a discrete
order.

We denote a · b also as ab, and we assume that · associates to the left.
We write ab↓ to indicate that ab is defined; note that a statement like
“abc↓” is to be interpreted as “ab↓ and (ab)c↓”.

A filter on a partial applicative poset (P,⩽, ·) is a subset P# ⊆ P such
that:

i. it is upward closed, i.e. if a ∈ P# and a ⩽ b then b ∈ P#;

ii. it is closed under defined application, i.e. if a,b ∈ P# and ab↓ then
ab ∈ P#.

1 From now on, PCAs.

20

3.1 partial combinatory algebras 21

A partial applicative structure is the datum (P,⩽, ·,P#) of a partial applica-
tive poset (P,⩽, ·) together with a filter P# on it. In particular, it is absolute
if P# = P.

A partial combinatory algebra is a partial applicative structure (P,⩽, ·,P#)

such that there exist elements k, s ∈ P# satisfying:

i. kab↓ and kab ⩽ a;

ii. sab↓;

iii. if ac(bc)↓, then sabc↓ and sabc ⩽ ac(bc),

for all a,b, c ∈ P. A partial combinatory algebra is total or discrete if the
underlying partial applicative poset is, and it is absolute if it is absolute as
a partial applicative structure.

Notation. Let (P,⩽, ·) be a partial applicative poset. Given two possibly
undefined expressions e, e ′ that, if defined, assume values in P, we write
e ⪯ e ′ for the following statement: “if e ′↓, then e↓ and e ⩽ e ′”.2 Instead,
we write e ⩽ e ′ only if both expressions are always defined.

Example 3.2. The archetypal example of a PCA is Kleene’s first model K1,
underlying Kleene’s original number realizability. K1 is the absolute and
discrete PCA defined on N by letting n ·m be the result of the n-th partial
recursive function φn on input m whenever defined, fixed an ordering
{φi | i ∈ N } of the partial recursive functions N → N.

Example 3.3. Underlying function realizability, a variant of Kleene’s number
realizability introduced in [23], is Kleene’s second model K2, defined on the
set NN. To describe the application map, we need some notation.

Assume fixed a recursive coding of finite sequences of natural numbers
where [a0, . . . ,an−1] codes the sequence (a0, . . . ,an−1). For α ∈ NN and
n ∈ N, we write α

⃓⃓
n

for [α(0), . . . ,α(n− 1)] and [n] ∗ α for the function
α ′ ∈ NN defined by α ′(0) = n and α ′(i+ 1) = α(i). Let then Fα : NN ⇀

N be the partial function defined by Fα(β) = m if and only if there exists
an n ∈ N such that:

1. for all i < n, α(β
⃓⃓
i
) = 0;

2. α(β
⃓⃓
n
) = m+ 1.

2 This relation is also called Kleene inequality.

3.1 partial combinatory algebras 22

With this notation, for α,β ∈ NN, we let αβ↓ if Fα([n] ·β)↓ for every
n ∈ N, in which case αβ is defined by αβ(n) := Fα([n] ∗β). K2 is then the
discrete PCA obtained by choosing the set of total recursive functions as a
filter.

The van Oosten model B, introduced in [31], generalizes K2 by consid-
ering all partial functions N ⇀ N as its domain, and partial recursive
functions as the filter; in that case, we obtain however a total PCA, which
can be ordered by letting α ⩽ β if α extends β as partial functions N ⇀ N

(in which case a filter is given by all subfunctions of partial recursive
functions).

Elements of a PCA are usually called combinators; in particular, the k
and s combinators correspond to constants from Schönfinkel’s combinatory
logic. Their most important consequence is combinatory completeness: every
partial function obtained by repeatedly applying the application map is
already present as a computation in the PCA itself.

More formally, let P = (P,⩽, ·,P#) be a PCA. The set of terms over P is
defined recursively as follows:

– we assume given a countable set of distinct variables, each of which
is a term;

– we assume given a constant symbol for each element in P, each of
which is a term;

– if t0, t1 are terms, then so is t0 · t1.

Every term t = t(x1, . . . , xn) defines a partial function Pn ⇀ P which
assigns the obvious, possibly undefined, interpretation t(a1, . . . ,an) to an
input sequence (a1, . . . ,an) ∈ Pn. Combinatory completeness can then be
expressed as follows.

Proposition 3.4 (Combinatory completeness). For every nonempty sequence
x,y of distinct variables and every term t = t(x,y), there exists an element
λ∗x,y.t ∈ P such that, for every sequence a of the same length as x and every b
in P:

1. (λ∗x,y.t)a↓;

2. (λ∗x,y.t)ab ⪯ t(a,b).

Moreover, if all the constants occurring in t are from P#, then λ∗x,y.t ∈ P# as
well.

3.1 partial combinatory algebras 23

Combinatory completeness allows us to perform constructions from
recursion theory inside P: let us see some examples which will turn out
to be useful in the following. Since they also correspond to constants of
combinatory logic, they are called combinators as well.

i. The identity combinator is defined as

i := λ∗x.x ∈ P#

and it satisfies ia ⩽ a for all a ∈ P.

ii. The constant combinator k can also be defined as λ∗x.x; its ‘dual’
k ∈ P# is defined as

k := ki

and it satisfies kab ⩽ b for all a,b ∈ P.

iii. The pairing combinator p ∈ P# and the unpairing combinators p0, p1 ∈
P# are defined as

p := λ∗x,y, z.zxy p0 := λ∗x.xk p1 := λ∗x.xk

and they satisfy p0(pab) ⩽ a and p1(pab) ⩽ b for all a,b ∈ P.

The most important construction on an arbitrary PCA, at least in the
context of this thesis, is the following.

Definition 3.5. Let P = (P,⩽, ·,P#) be a PCA.
The set TP of inhabited downward-closed subsets of P, ordered by

inclusion, can be equipped with a partial applicative structure by defining,
for α,β ∈ TP:

α ·β := ↓{ xy | x ∈ α, y ∈ β }

in case xy↓ for all x ∈ α and y ∈ β, and by defining the filter:

(TP)# :=
{︁
α ∈ TP

⃓⃓
α∩ P# ∈ TP

}︁
=

{︁
α ∈ TP

⃓⃓
∃β ∈ TP#, β ⊆ α

}︁
= ↑(TP#)

Two combinators k, s ∈ P# for P then yield corresponding combinators
↓{k}, ↓{s} ∈ (TP)# for this partial applicative structure, making it into a
PCA which we denote as TP.

In the same way, the set DP of all downward-closed subsets of P ordered
by inclusion can be made into a PCA DP with the same application
operation, which in particular yields αβ↓ and αβ = ∅ in case either α = ∅

3.2 morphisms of partial combinatory algebras 24

or β = ∅; a filter (DP)# is given by the same (TP)#, and the combinators
are described in the same way as well.

Remark 3.6. For future reference, given a discrete and absolute PCA P, we
denote with Pow(P) the PCA DP: note then that the filter is given by the
set of inhabited subsets of P.

Notation. Following [39], for x ∈ P and β ∈ DP we write x · β instead
of ↓{x} · β. Explicitly, xβ↓ if xy↓ for all y ∈ β, in which case xβ =

↓{ xy | y ∈ β }.
Therefore, given γ ∈ DP, x ·β ⊆ γ is equivalent to xy ∈ γ for all y ∈ β.

3.2 morphisms of partial combinatory algebras

First, let us introduce a notion of morphism of PCAs which will not
correspond exactly to functors between realizability toposes, but which
we need for technical reasons in that perspective. Let A = (A,⩽, ·,A#) and
B = (B,⩽, ·,B#) be PCAs.

Definition 3.7. A morphism of PCAs A → B is a function f : A → B

satisfying:

i. f(a) ∈ B# for all a ∈ A#;

ii. there exists an element t ∈ B# such that if aa ′↓ then tf(a)f(a ′)↓ and
tf(a)f(a ′) ⩽ f(aa ′);

iii. there exists an element u ∈ B# such that if a ⩽ a ′ then uf(a)↓ and
uf(a) ⩽ f(a ′),

in which case we say that f is realized by t,u ∈ B# or that it preserves
application up to t and order up to u.

An order ‘up to a realizer’ can be defined on morphisms of PCAs as
follows. Given two morphisms f, f ′ : A → B, we write f ⩽ f ′ if there exists
some s ∈ B# such that sf(a)↓ and sf(a) ⩽ f ′(a) for all a ∈ A, in which
case we say that f ⩽ f ′ is realized by s.

Proposition 3.8. PCAs, morphisms of PCAs and their order form a preorder-
enriched category OPCA.

Definition 3.9. A morphism of PCAs f : A → B is computationally dense if
there exists an element m ∈ B# with the property that for all s ∈ B# there
is some r ∈ A# such that mf(ra) ⪯ sf(a) for all a ∈ A.

3.2 morphisms of partial combinatory algebras 25

To move from these morphisms to the right ones, let us note that T and
D defined in Definition 3.5 determine pseudomonads on OPCA.

Given a morphism of PCAs f : A → B, we can define a morphism
Tf : TA → TB by letting:

Tf(α) := ↓(f(α))

= ↓{ f(x) | x ∈ α }

and this makes the association A ↦→ T A pseudofunctorial. Then, a pseu-
domonad structure is defined considering:

– as unit δ, the pseudonatural transformation : idoPCA ⇒ T of compo-
nents δA : A → TA given by the (computationally dense) morphisms
of PCAs sending a ∈ A to the principal downset ↓{a} ∈ TA;

– as multiplication ∪, the pseudonatural transformation TT ⇒ T of
components ∪A : TT A → T A given by the (computationally dense)
morphisms of PCAs sending α ∈ TTA to its union

⋃︁
α.3

Similarly, we have a (computationally dense) pseudomonad (D, δ ′,∪ ′)

on oPCA; the inclusions TA ↪→ DA determine a natural transformation
T ⇒ D.

Through these two pseudomonads we can define two new notions of
morphism of PCAs.

Definition 3.10. Let oPCAT be the preorder-enriched bicategory defined
as the Kleisli bicategory of the pseudomonad (T , δ,∪). Explicitly, OPCAT
is the category having PCAs as objects, and morphisms of PCAs A → T B

as morphisms A → B, which we call applicative morphisms.
Similarly, let oPCAD be the preorder-enriched bicategory defined as the

Kleisli bicategory of the pseudomonad (D, δ ′,∪ ′). Explicitly, OPCAD is the
category having PCAs as objects, and morphisms of PCAs A → DB as
morphisms A → B, which we call partial applicative morphisms.

In either case, a morphism in OPCAT or OPCAD is computationally
dense if it is so as a morphism of PCAs. Explicitly, a (partial) applicative
morphism f : A → B is computationally dense if there exists an element
m ∈ B# with the property that for all s ∈ B# there is some r ∈ A# satisfying
mf(ra)↓ and mf(ra) ⊆ sf(a) for any a ∈ A such that sf(a)↓.

Remark 3.11. As T and D are pseudomonads, OPCAT and OPCAD are not
(preorder-enriched) categories but a priori only bicategories. The only

3 In this case, naturality actually holds on the nose.

3.3 realizability triposes 26

axiom of an ordinary category that does not hold, however, is f ◦ id = f, in
either OPCAT and OPCAD. Since it can be shown that f satisfies f ◦ id = f

if and only if it preserves the order on the nose, f can therefore be replaced
up to isomorphism with f◦ id which preserves the order on the nose: under
this identification, OPCAT and OPCAD can then be treated as preorder-
enriched categories.

Remark 3.12. An applicative morphism f : A → B can be seen as a partial
applicative morphism A → B through T B ↪→ DB. Note then that the
inclusion T B ↪→ DB is a pseudomono, that is, the composition functor

OPCA(A, T B) → OPCA(A,DB)

is an equivalence of preorder categories for every PCA A; therefore,
OPCAT is a preorder-enriched sub(-bi)category of OPCAD.

In other words, this means that we can reduce to consider only par-
tial applicative morphisms in the following, of which ‘plain’ applicative
morphisms are a particular case. More precisely, we can say that a partial
applicative morphism f : A → B is total if dom f = A, where

dom f := { a ∈ A | ∃b ∈ f(a) } ,

which is equivalent to say that f factors through T B ↪→ DB; hence,
applicative morphisms can be identified with total partial applicative
morphisms.

Example 3.13. The map h(α) := { e ∈ N | φe = α } is a partial applicative
morphism K2 → K1.

3.3 realizability triposes

Let A = (A,⩽, ·,A#) be a PCA. We define the realizability tripos PA as
follows.

For any set X, we let PA(X) := Set(X,DA), ordered by letting ϕ ⊢X ψ if
there exists an element r ∈ A# such that r ·ϕ(x) ⊆ ψ(x)4 for all x ∈ X. The

4 Recall that this notation presupposes r ·ϕ(x)↓.

3.4 transformations of realizability triposes 27

Heyting structure is then given by ⊤X(x) := A and ⊥X(x) := ∅ as top and
bottom elements, and for ϕ,ψ ∈ PA(X):

(ϕ∧ψ)(x) := p ·ϕ(x) ·ψ(x)

(ϕ∨ψ)(x) := (p · k ·ϕ(x))∪ (p · k ·ψ(x))

(ϕ→ ψ)(x) := { a ∈ A | a ·ϕ(x) ⊆ ψ(x) }

For any function f : X→ Y, the precomposition map f∗ : PA(Y) → PA(X)

is then a morphism of Heyting prealgebras. Adjoints for f∗ satisfying the
Beck-Chevalley condition are defined by:

∃f(ϕ)(y) :=
⋃︂

x∈f -1(y)

ϕ(x)

∀f(ϕ)(y) :=
{︁
a ∈ A

⃓⃓
∀b ∈ A, ∀x ∈ f -1(y), ab↓ and ab ∈ ϕ(x)

}︁
while a generic element is trivially given by idDA ∈ PA(DA).

We denote with RT(A) the realizability topos Set[PA].

Example 3.14. RT(K1) is the effective topos Eff.

3.4 transformations of realizability triposes

Let us now see how the notions of morphisms between PCAs defined
above correspond to transformations between the associated realizability
triposes and functors between the induced realizability toposes.

First, let’s start by linking morphisms of PCAs with left exact transfor-
mations of realizability triposes. As we know, a transformation of triposes
Φ : PA → PB is given up to isomorphism by postcomposition with some
function f : DA→ DB at each component: as shown in [39, Prop. 3.3.16],
Φ is left exact if and only if f is a morphism of PCAs, and the respective
orders agree as well. In other words, we have the following.

Proposition 3.15. The association f ↦→ f ◦− is 2-functorial on downsets PCAs
and, for any PCAs A and B, it realizes an equivalence of preorder categories:

OPCA(DA,DB) ≃ Triplex(Set)(PA,PB)

Instead, partial applicative morphisms A → B are characterized as those
inducing regular transformations of triposes, which we now introduce.

3.4 transformations of realizability triposes 28

Definition 3.16. Let P and Q be E-triposes. A left exact transformation
Φ+ : P → Q is regular if it preserves existential quantification, that is, if:

(Φ+)Y ◦ ∃g ⊣⊢Y ∃g ◦ (Φ+)X

for all g : X→ Y in E.
We denote with Tripreg(E) the wide subcategory of Triplex(E) on regular

transformations.

Remark 3.17. This means that Φ+ preserves the interpretation of regular
logic, the fragment of first-order logic defined by ⊤, ∧ and ∃.

Consider now a partial applicative morphism f : A → B, that is, a
morphism of PCAs f : A → DB. Then, f corresponds to an essentially
unique D-algebra morphism ˜︁f : DA → DB which, up to isomorphism,
we can describe as: ˜︁f(α) := ⋃︂

a∈α
f(a)

The association f ↦→ ˜︁f is 2-functorial5 on OPCAD, and it realizes an equiva-
lence of preorder categories between partial applicative morphisms A → B

and D-algebra morphisms DA → DB.
Therefore, the correspondence stated in the previous proposition re-

stricts to partial applicative morphisms and regular transformations: in-
deed, a left exact transformation g ◦− : PA → PB is regular if and only
if g : DA → DB is a D-algebra morphism, i.e. if and only if it is up to
isomorphism of the form g = ˜︁f for an essentially unique partial applicative
morphism f : A → B.

Proposition 3.18. The association f ↦→ ˜︁f ◦− determines a 2-fully faithful 2-
functor:

OPCAD Tripreg(Set)

Explicitly, this means that for any PCAs A and B there is an equivalence of
preorder categories:

OPCAD(A, B) ≃ Tripreg(Set)(PA,PB)

Finally, we can specify the previous correspondence to geometric mor-
phisms by means of computational density. First, note how computational
density can be characterized by the existence of right adjoints in OPCA.

5 As noted in Remark 3.11, OPCAD is only a bicategory, but compositions are defined on
the nose so we can still speak of 2-functors rather than pseudofunctors.

3.4 transformations of realizability triposes 29

Lemma 3.19. Let f : A → B be a partial applicative morphism. Then, the
following are equivalent:

1. f is computationally dense;

2. ˜︁f : DA → DB has a right adjoint in OPCA,

in which case the right adjoint h : DB → DA can be described as:

h(β) := ↓{ a | mf(a)↓ and mf(a) ⊆ β }

where m ∈ B# witnesses computational density for f.

As the existence of right adjoints in OPCA precisely corresponds to the
existence of right adjoints on the level of transformations of triposes, we
conclude with the following.

Theorem 3.20. Let OPCAD,cd be the wide sub(-bi)category of OPCAD on com-
putationally dense partial applicative morphisms.

Then, the 2-functor of Proposition 3.18 restricts to a 2-fully faithful 2-functor:

OPCAD,cd Tripgeo(Set)

Explicitly, this means that for any PCAs A and B there is an equivalence of
preorder categories:

OPCAD,cd(A, B) ≃ Tripgeo(Set)(PA,PB)

In particular, a right adjoint of ˜︁f ◦− : PA → PB is given by h ◦− : PB → PA,
where h : DB → DA is right adjoint to ˜︁f in OPCA.

Example 3.21. Consider the function f0 : K1 → K2 defined by letting f0(n)
be the constant function of value n. The function f := δK2f0 is a (total)
applicative morphism K → K2 having the partial applicative morphism
h : K2 → K1 of Example 3.13 as right adjoint in OPCA. Therefore, the pair
f ⊣ g induces a geometric morphism of triposes PK2 → PK1 , and hence a
geometric morphism of toposes RT(K2) → Eff.

4
A R R O W A L G E B R A S

We now introduce the main object of this thesis: arrow algebras. The
material of this chapter, if not for minor remarks, is entirely taken from
[2].

Arrow algebras were introduced in [2] generalizing Alexandre Miquel’s
implicative algebras [28, 29] as algebraic structures which induce triposes
and hence toposes. The main advantage of arrow algebras, compared to
implicative algebras, lies in the fact that they perfectly factor through the
construction of realizability triposes coming from PCAs which are actually
partial, whereas implicative algebras are the intermediate structure only in
the case of total PCAs. Moreover, as we will see, subtriposes of triposes
arising from arrow algebras – that is, arrow triposes – admit a particularly
simple description as arrow triposes themselves, in a construction which
does not work for implicative algebras. Together with the theory of mor-
phisms between arrow algebras developed in the next chapters, this allows
us to easily rephrase and extend results known in the literature at the
level of PCAs: as an example of application, in Chapter 7, we will study
modified realizability in the context of arrow algebras.

4.1 arrow algebras

Definition 4.1. An arrow structure is a complete meet-semilattice (A,≼)

endowed with a binary operation → : A×A→ A such that if a ′ ≼ a and
b ≼ b ′, then a→ b ≼ a ′ → b ′.

A separator on an arrow structure (A,≼,→) is a subset S ⊆ A such that:

i. it is upward closed, i.e. if a ∈ S and a ≼ b then b ∈ S;

ii. it is closed under modus ponens, i.e. if a→ b ∈ S and a ∈ S then b ∈ S;

30

4.1 arrow algebras 31

iii. it contains the combinators:

k := ⋏
a,b∈A

a→ b→ a

s := ⋏
a,b,c∈A

(a→ b→ c) → (a→ b) → (a→ c)

a := ⋏
a,(bi)i∈I,(ci)i∈I∈A

(︄
⋏
i∈I
a→ bi → ci

)︄
→ a→

(︄
⋏
i∈I
bi → ci

)︄

An arrow algebra is a quadruple (A,≼,→,S) where (A,≼,→) is an arrow
structure and S is a separator on it.

Notation. We will assume that → associates to the right, as it is common
in type theory, and binds stronger than ⋏. This means that, for example,
the combinator k is given by ⋏a,b∈A(a→ (b→ a)).

A fundamental property of arrow algebras is given by the following.

Proposition 4.2. Let A = (A,≼,→,S) be an arrow algebra.

1. Let (xi)i∈I, (yi)i∈I and (zi)i∈I be I-indexed families of elements in A. If:

⋏
i∈I
xi → yi → zi ∈ S and ⋏

i∈I
xi ∈ S

then:

⋏
i∈I
yi → zi ∈ S

2. Letϕ be a propositional formula built from propositional variables p1, . . . ,pn
using implications only. If ϕ is an intuitionistic tautology, then:

⋏
a1,...,an∈A

ϕ(ai/pi) ∈ S

Remark 4.3. In the following, we will make extensive use of the previous
proposition, which we will justify simply as intuitionistic reasoning.

The idea, in essence, is to find a suitable propositional intuitionistic
tautology built of implications, in general of the shape ϕ → ψ → χ, so
that ⋏ϕ→ ψ→ χ ∈ S as in (2); then, from the knowledge of ⋏ϕ ∈ S, we
can deduce ⋏ψ→ χ ∈ S as in (1).

4.1 arrow algebras 32

Corollary 4.4. Let (A,≼,→,S) be an arrow algebra. Then, S contains the
combinators:

i := ⋏
a∈A

a→ a

b := ⋏
a,b,c∈A

(b→ c) → (a→ b) → (a→ c)

Definition 4.5. An arrow algebra A = (A,≼,→,S) is compatible with joins
if, for all a ∈ A and all B ⊆ A:

(⋎
b∈B

b) → a = ⋏
b∈B

(b→ a)

nuclei Let us now introduce nuclei, a generalization of the locale-
theoretical notion which will correspond to closure transformations on
arrow triposes.

Definition 4.6. Let A = (A,≼,→,S) be an arrow algebra. A nucleus on A

is a function j : A→ A such that:1

i. if a ≼ b then ja ≼ jb;

ii. ⋏a∈A a→ ja ∈ S;

iii. ⋏a,b∈A(a→ jb) → ja→ jb ∈ S.

In particular, these properties also imply:

iv. ⋏a∈A jja→ ja ∈ S;

v. ⋏a,b∈A(a→ b) → ja→ jb ∈ S;

vi. ⋏a,b∈A j(a→ b) → ja→ jb ∈ S,

and we can even substitute (iii) above with the conjunction of (iv) and (vi).

Drawing from the discussion in Chapter 2, we can define a new arrow
algebra Aj starting from every nucleus j on A. In hindsight, Aj will give
rise precisely to the explicit description of the inclusion induced by the
closure transformation corresponding to j given in Corollary 2.32.

1 Note how we systematically omit brackets to improve readability.

4.1 arrow algebras 33

Proposition 4.7. Let A = (A,≼,→,S) be an arrow algebra and let j : A→ A

be a nucleus on it. Then, Aj = (A,≼,→j,Sj) with

a→j b := a→ jb Sj := { a ∈ A | ja ∈ S }

is also an arrow algebra, which is compatible with joins whenever so is A.

Remark 4.8. ⋏a∈A a → ja ∈ S implies that S ⊆ Sj: indeed, if a ∈ S, then
by modus ponens ja ∈ S, which precisely means a ∈ Sj.

Example 4.9. For any arrow algebra A = (A,≼,→,S) and all c ∈ A, the
following are nuclei on A:

1. ja := c→ a;

2. ja := (a→ c) → c;

3. ja := (a→ c) → a.

Particularly relevant in the theory of arrow algebras is the nucleus:

∂a := ⊤ → a

which is the special case of (1) above for c = ⊤. Note that it satisfies the
extra property:

⋏
a∈A

(⊤ → a) → a ∈ S

This follows by intuitionistic reasoning since q → (q → p) → p is an
intuitionistic tautology and ⊤ ∈ S.

The special case of (2) for c = ⊥, instead, is the double negation nucleus:

¬¬a := (a→ ⊥) → ⊥

the interpretation of λ-terms Generalizing what happens for
implicative algebras, let us now see how to interpret λ-terms in an arrow
algebra A = (A,≼,→,S).

First, let us recall the definition of λ-terms.

Definition 4.10. Fixed a countable set of variables, the collection of λ-terms
is the smallest collection of formal expressions such that:

i. each variable is a λ-term;

ii. if M and N are λ-terms, then the application MN is a λ-term;

4.1 arrow algebras 34

iii. if M is a λ-term and x is a variable, then the abstraction λx.M is a
λ-term.

In order to interpret λ-terms in A, we hence need to be able to interpret
both applications and abstractions.

Definition 4.11. For a,b ∈ A, we define the application:

ab :=⋏Ua,b

where Ua,b := { c→ d ∈ A | a ≼ b→ c→ d }.

Lemma 4.12. The application enjoys the following properties.

1. If a ≼ a ′ and b ≼ b ′, then ab ≼ a ′b ′.

2. (a→ b→ c)a ≼ b→ c.

3. (a→⋏i∈I bi → ci)a ≼ ⋏i∈I bi → ci.

4. If a,b ∈ S, then ab ∈ S.

Definition 4.13. For a function f : A→ A, we define the abstraction:

λf := ⋏
x∈A

x→ ∂f(x)

Lemma 4.14. Let f,g : A→ A be functions; the abstraction enjoys the following
properties.

1. If f(a) ≼ g(a) for all a ∈ A, then λf ≼ λg.

2. (λf)a ≼ ∂f(a) for all a ∈ A.

Notation. We will assume that application associates to the left and binds
stronger than →, which binds stronger than ∂, which binds stronger than

⋏. In particular, this means that a→ bc stands for a→ (bc), ∂ab stands
for ∂(ab), and ∂a→ b stands for ⊤ → a→ b rather than (⊤ → a) → b.

We can now recursively define an interpretation of λ-terms in A.

Definition 4.15. Let M be a λ-term with free variables among x1, . . . , xn.
The interpretation ot M in A is a function MA : An → A defined recursively
as follows:

1. if M = xi, then MA is the projection onto the i-th coordinate;

4.1 arrow algebras 35

2. if M = N1N2, then:

MA(a) := NA
1 (a)N

A
2 (a)

3. if M = λx.N where the free variables of N are among x1, . . . , xn, x,
then:

MA(a) := λ(b ↦→ NA(a,b))

The proof of the following nontrivial result needs a detour which is
carried out in full details in [2].

Theorem 4.16. Let A = (A,≼,→,S) be an arrow algebra and let M be a λ-term
with free variables among x1, . . . , xn. Then, for any a1, . . . ,an ∈ S:

MA(a1, . . . ,an) ∈ S

Remark 4.17. The difference in the interpretation of λ-terms is arguably the
biggest price to pay in moving to arrow algebras from implicative algebras,
where it is much cleaner and better-behaved.

the logical order Although arrow algebras are defined in terms
of ≼, which we refer to as the evidential order, there is another, arguably
more important, order which can be defined in terms of implications and
separators. As we will see, this order will be the only relevant one in the
construction of the arrow tripos.

Definition 4.18. Let A = (A,≼,→,S) be an arrow algebra. We define the
logical order ⊢ on A by letting:

a ⊢ b ⇐⇒ a→ b ∈ S

which is weaker than the evidential order since i ∈ S gives a→ a ∈ S for
all a ∈ A and therefore if a ≼ b then a→ a ≼ a→ b ∈ S i.e. a ⊢ b.

Note that ⊢ allows us to recover the separator2 as:

S = { a ∈ A | ⊤ ⊢ a }

Indeed, if a ∈ A is such that ⊤ ⊢ a, then a ∈ S follows by modus ponens
from ⊤,⊤ → a ∈ S; conversely, if a ∈ S, then the intuitionistic tautology
p→ q→ p gives a→ ⊤ → a ∈ S and hence ⊤ → a ∈ S by modus ponens.

2 In hindsight, this characterizes the separator as what Pitts calls the set of designated truth
values of the induced arrow tripos.

4.1 arrow algebras 36

Remark 4.19. We denote with ⊢j the logical order in the arrow algebra Aj

induced by a nucleus j on A. Explicitly, a ⊢j b if and only if j(a→ jb) ∈ S,
which by the properties of nuclei and separators is equivalent to a→ jb ∈
S and hence to a ⊢ jb.

Proposition 4.20. (A,⊢) is a Heyting prealgebra, with → being the Heyting
implication.

Proof (sketch). The combinators i, b ∈ S respectively express reflexivity and
transitivity of ⊢, making (A,⊢) into a preorder, which is bounded by ⊤
and ⊥ since ⊥ ≼ a ≼ ⊤ for all a ∈ A. For a,b ∈ A, a meet of a and b can
be defined as:

a× b := (λz.z(∂a)(∂b))A

= ⋏
z∈A

z→ ∂z(∂a)(∂b)

while a join can be defined as:

a+ b := ⋏
c∈A

(a→ ∂c) → (b→ ∂c) → ∂c

the arrow tripos Let A = (A,≼,→,S) be an arrow algebra.

Definition 4.21. For any set I, the set AI of functions I→ A can be given
an arrow structure by choosing pointwise order and implication, and the
uniform power separator:3

SI :=

{︄
ϕ : I→ A

⃓⃓⃓⃓
⃓⋏
i∈I
ϕ(i) ∈ S

}︄
makes it into an arrow algebra which we denote as AI.

The logical order in AI, which we denote as ⊢I, is therefore given
explicitly by:

ϕ ⊢I ψ ⇐⇒ ⋏
i∈I
ϕ(i) → ψ(i) ∈ S

and by Proposition 4.20, (AI,⊢I) is a Heyting prealgebra.

Remark 4.22. As above, given some nucleus j on A, we denote with ⊢jI
the logical order in AIj . Again by the properties of nuclei and separators,
ϕ ⊢jI ψ explicitly means ϕ ⊢I jψ.

3 The name comes from the analog for implicative algebras.

4.1 arrow algebras 37

Remark 4.23. In general, ⊢I is stronger than the pointwise version of ⊢: the
two coincide only if the separator is closed under arbitrary meets.

However, since the Heyting implication in (AI,⊢I) is the pointwise
implication →, it follows that the logical meet ϕ×ψ of ϕ,ψ ∈ AI can be
described as the pointwise logical meet θ(i) := ϕ(i)×ψ(i) of ϕ and ψ. In
fact:

ϕ ⊢I ψ→ χ ⇐⇒ ⋏
i∈I
ϕ(i) → ψ(i) → χ(i) ∈ S

⇐⇒ ⋏
i∈I

(ϕ(i)×ψ(i)) → χ(i) ∈ S

⇐⇒ θ ⊢I χ

By direct inspection, instead, we also have that the logical join ϕ+ψ of
ϕ,ψ ∈ AI can be described as the pointwise logical join σ(i) := ϕ(i) +ψ(i)
of ϕ and ψ. Indeed:

– on one hand, (λxzw.zx)A ∈ S witnesses ϕ ⊢I σ, and similarly
(λxzw.wx)A witnesses ψ ⊢I σ;

– on the other, if ϕ ⊢I χ and ψ ⊢I χ, then (λz.zs1s2)A ∈ S witnesses
σ ⊢I χ, where s1 := ⋏i∈Iϕ(i) → ∂χ(i) ∈ S and s2 := ⋏i∈Iψ(i) →
∂χ(i) ∈ S.

In essence, even though the order in (AI,⊢I) is not determined pointwise
by that of (A,⊢), all the Heyting structure is.

We can finally define the arrow tripos induced by A, of which the Heyting
prealgebras (AI,⊢I) are the components at each level I.

Theorem 4.24. Let A = (A,≼,→,S) be an arrow algebra. The functor:

PA : Setop → HeytPre

I (AI,⊢I)

J (AJ,⊢J)

f −◦f

is a canonically presented tripos.
In particular, left and right adjoints to f∗ : PA(I) → PA(J) are given by:

∃f(α)(i) := ⋏
a∈A

⎛⎝ ⋏
j∈f -1(i)

α(j) → ∂a

⎞⎠→ ∂∂a

∀f(α)(i) := ⋏
j∈f -1(i)

∂α(j)

4.1 arrow algebras 38

while a generic element is trivially given by idA : A→ A ∈ PA(A).

Remark 4.25. If A is compatible with joins, a left adjoint to f∗ : PA(I) →
PA(J) can also be defined as:

∃f(α)(i) := ⋎
j∈f -1(i)

α(j)

Remark 4.26. Using the general results on triposes of Chapter 2, (2) in
Proposition 4.2 can now be extended to arbitrary propositional formulas
as follows.

If ϕ is an intuitionistic tautology built from propositional variables
p1, . . . ,pn, then:

PA ⊨ ∀x1, . . . , xn ϕ(x1, . . . , xn)

and hence, by soundness:

[∀x1, . . . , xn ϕ(x1, . . . , xn)] ∈ S

which gives:

⋏
a1,...,an∈A

∂ϕ(ai/pi) ∈ S

In particular, if the main connective of ϕ is →, we can apply (1) of Propo-
sition 4.2, obtaining:

⋏
a1,...,an∈A

ϕ(ai/pi) ∈ S

As an example, consider De Morgan’s laws for disjunction, ¬(p∨ q) →
¬p∧ ¬q and ¬p∧ ¬q → ¬(p∨ q), which are intuitionistic tautologies.
Then:

⋏
a,b∈A

¬(a+ b) → ¬a×¬b ∈ S

⋏
a,b∈A

¬a×¬b→ ¬(a+ b) ∈ S

where obviously ¬x := x→ ⊥.

Notation. We denote with AT(A) the arrow topos induced by A, that is:

AT(A) := Set[PA]

4.2 examples 39

4.2 examples

implicative algebras Implicative algebras can be characterized as
arrow algebras where the equality:

a→ ⋏
b∈B

b = ⋏
b∈B

a→ b

holds for all elements a and subsets B. More precisely, note that in every
arrow algebra A the following hold:

1. a→⋏b∈B b ≼ ⋏b∈B a→ b for all a ∈ A and all subsets B ⊆ A;

2. ⋏b∈B a → b ⊢ a → ⋏b∈B b for all a ∈ A and all subsets B ⊆ A

containing implications only.

Therefore, implicative algebras coincide with arrow algebras where (2) is
strengthened to the evidential order and to arbitrary subsets.

frames Every frame O(X) can be canonically seen as an arrow algebra4

by using its order and its Heyting implication as the arrow structure, and
{⊤} as the separator. Note then that the logical order coincides with the
evidential order, since x → y ∈ S if and only if ⊤ ⩽ x → y, which is
equivalent to x ⩽ y.

Similarly, the logical order ⊢I on O(X)I reduces to the pointwise order,
which makes so that the arrow tripos PO(X) coincides with the localic
tripos of Example 2.11, and hence AT(O(X)) ≃ Sh(O(X)).

Remark 4.27. More generally, note that a separator on the canonical arrow
structure on O(X) is precisely a filter on the frame O(X), but we will not
consider any separator other than {⊤} in this thesis.

partial combinatory algebras A main example of arrow alge-
bras arises from partial combinatory algebras. Let A = (A,⩽, ·,A#) be a
PCA and let DA the set of downward-closed subsets of A. Defining, for
α,β ∈ DA:

α→ β := { a ∈ A | a ·α↓ and a ·α ⊆ β }

and letting SDA be the family of downward-closed subsets containing an
element from the filter A#, [2, Thm. 3.9] shows how (DA,≼,→,SDA) is an

4 In particular, compatible with joins.

4.2 examples 40

arrow algebra which is compatible with joins; we denote it with DA as
for the corresponding PCA.5

Note then that:

SDA =
{︁
α ∈ DA

⃓⃓
∃a ∈ α∩A# }︁

=
{︁
α ∈ DA

⃓⃓
∃a ∈ A# : ↓{a} ⊆ α

}︁
=

{︁
α ∈ DA

⃓⃓
∃β ∈ T(A#) : β ⊆ α

}︁
meaning that the separator SDA coincides with the filter (DA)# of Def-
inition 3.5. This makes so that the arrow tripos PDA coincides with the
realizability tripos of Section 3.3, and hence AT(DA) = RT(A).

Remark 4.28. In [2, Thm. 3.10], another construction is identified which
yields an arrow algebra starting from a PCA. Although it will not play any
role in this thesis, we here introduce it to use it as an example in Chapter 7.

Let A = (A,⩽, ·,A#) be a PCA. Then, A×A is a PCA with pointwise
order and application, and with the filter A# × A#, which means that
D(A×A) is an arrow algebra. Explicitly, its elements are downward-
closed binary relations on A ordered by inclusion, the implication is
defined as:

R→ S :=
{︁
(a,a ′) ∈ A×A

⃓⃓
(a,a ′) · R↓ and (a,a ′) · R ⊆ S

}︁
while a separator is given by:

SD(A×A) :=
{︁
R ∈ D(A×A)

⃓⃓
∃(a,a ′) ∈ R∩ (A# ×A#)

}︁
If we restrict to downward-closed binary relations on A which are sym-
metric and transitive6, we obtain an arrow algebra which is compatible
with joins; we denote it as PER(A).

5 Similarly, we let Pow(A) be the arrow algebra DA for a discrete and absolute PCA A.
6 That is, partial equivalence relations.

5
I M P L I C AT I V E M O R P H I S M S

After having set up the preliminary material on arrow algebras, the
natural step from a categorical point of view is to introduce morphisms
between them, possibly in such a way as to correspond to transformations
between the associated arrow triposes. In this chapter, we introduce the
first notion of a morphism between arrow algebras we will see in this
thesis, namely that of implicative morphisms, and we set up some first results
which will be useful in the next chapter.

By definition, an arrow algebra is a poset endowed with an implication
and a specified subset: therefore, it would be natural to define morphisms
of arrow algebras as monotone functions preserving implications (in a
suitable sense) and the specified subset. This intuition, obviously also
valid for implicative algebras, is what leads to the definition of applicative
morphisms in [36]. However, for reasons which will become clear in the next
chapter, we will not define our morphisms to be monotone with respect
to the evidential order1, but we will see how this will not actually be an
issue. The downside is that, in general, we will have to impose a third
condition – automatically satisfied in the case of monotonicity – involving
both implications and separators.

5.1 implicative morphisms

Definition 5.1. Let A = (A,≼,→,SA) and B = (B,≼,→,SB) be two arrow
algebras. An implicative morphism f : A → B is a function f : A → B

satisfying:

i. f(a) ∈ SB for all a ∈ SA;

ii. there exists an element r ∈ SB such that r ≼ f(a → a ′) → f(a) →
f(a ′) for all a,a ′ ∈ A;

1 As we have already mentioned, the evidential order is not the most important feature of
an arrow algebra anyway.

41

5.1 implicative morphisms 42

iii. for any subset X ⊆ A×A,

if ⋏
(a,a ′)∈X

a→ a ′ ∈ SA then ⋏
(a,a ′)∈X

f(a) → f(a ′) ∈ SB,

in which case we say that f is realized by r ∈ SB.
An order ‘up to a realizer’ can be defined on implicative morphisms as

follows. Given two implicative morphisms f, f ′ : A → B, we write f ⊢ f ′ if
there exists an element u ∈ SB such that u ≼ f(a) → f ′(a) for all a ∈ A, in
which case we say that f ⊢ f ′ is realized by u. In other words, this means
that:

⋏
a∈A

f(a) → f ′(a) ∈ SB

i.e. f ⊢A f ′ seeing f and f ′ as elements of the arrow algebra BA of Defi-
nition 4.21, so in particular it is also equivalent to fϕ ⊢I f ′ϕ for all sets I
and all functions ϕ : I→ A.

Remark 5.2. If f is monotone with respect to the evidential order, then (iii)
is a consequence of (i) and (ii).

Indeed, given any X ⊆ A×A such that ⋏(a,a ′)∈X a→ a ′ ∈ SA:

– by (ii) we have:

⋏
(a,a ′)∈X

f(a→ a ′) → f(a) → f(a ′) ∈ SB;

– as f(⋏P) ≼ ⋏ f(P) for all subsets P ⊆ A by monotonicity, and by (i)
and upward-closure of SB:

f

⎛⎝ ⋏
(a,a ′)∈X

a→ a ′

⎞⎠ ≼ ⋏
(a,a ′)∈X

f(a→ a ′) ∈ SB,

from which ⋏(a,a ′)∈X f(a) → f(a ′) ∈ SB by Proposition 4.2.
Therefore, in proving that a monotone function is an implicative mor-

phism, we will systematically omit to check condition (iii).

Remark 5.3. Applicative morphisms of [36] only satisfy condition (ii) for
a,a ′ ∈ A such that a ⊢ a ′, while they are monotone by definition. The
two notions are hence incomparable in general.

Proposition 5.4. Arrow algebras, implicative morphisms and their order form a
preorder-enriched category ArrAlg.

5.1 implicative morphisms 43

Proof. First, let f : A → B and g : B → C be implicative morphisms; let
us show that gf : A → C satisfies the three conditions in Definition 5.1
making it an implicative morphism A → C.

i. If a ∈ SA, then f(a) ∈ SB and hence gf(a) ∈ SC.

ii. By (ii) for f, we know that:

⋏
a,a ′

f(a→ a ′) → f(a) → f(a ′) ∈ SB

from which, by (iii) for g:

⋏
a,a ′

gf(a→ a ′) → g(f(a) → f(a ′)) ∈ SC

Moreover, by (ii) for g we know that:

⋏
a,a ′

g(f(a) → f(a ′)) → gf(a) → gf(a ′) ∈ SC

from which, by intuitionistic reasoning:

⋏
a,a ′

gf(a→ a ′) → gf(a) → gf(a ′) ∈ SC

iii. Given X ⊆ A×A be such that ⋏(a,a ′)∈X a→ a ′ ∈ SA, by (iii) for f
we have:

⋏
(a,a ′)∈X

f(a) → f(a ′) ∈ SB

and hence by (iii) for g we have:

⋏
(a,a ′)∈X

gf(a) → gf(a ′) ∈ SC

Then, for any arrow algebra A, the identity function idA is an implicative
morphism A → A, trivially realized by i ∈ SA since we know that:

i ≼ ⋏
a,a ′∈A

(a→ a ′) → a→ a ′

This directly makes ArrAlg into a category.
The fact that ⊢ is a preorder on each homset ArrAlg(A,B) follows im-

mediately as it is the subpreorder of (BA,⊢A) on implicative morphisms.
Therefore, to conclude, we simply need to show that composition of im-
plicative morphisms is order-preserving:

5.1 implicative morphisms 44

– for f, f ′ : A → B and g : B → C such that f ⊢ f ′; explicitly, this means
that:

⋏
a∈A

f(a) → f ′(a) ∈ SB

from which, by (iii) in Definition 5.1:

⋏
a∈A

gf(a) → gf ′(a) ∈ SC

meaning that gf ⊢ gf ′;

– for f : A → B and g,g ′ : B → C, any realizer of g ⊢ g ′ also realizes
gf ⊢ g ′f.

Example 5.5. Let j : A→ A be a nucleus on an arrow algebra A. Then, (i),
(ii) and (vi) in Definition 4.6 immediately imply that j is an implicative
morphism A → A.

Example 5.6. In a constructive metatheory, truth values are arranged in
the frame Ω given by the powerset of the singleton {∗}2, which we can
see as an arrow algebra in the canonical way. For any arrow algebra
A = (A,≼,→,S), we can then consider the characteristic function of the
separator, which is defined constructively as:

χ : A→ Ω χ(a) := { ∗ | a ∈ S }

Note that, by upward closure of the separator, χ is monotone. Indeed, if
a ≼ a ′, to show that χ(a) ⊆ χ(a ′) suppose that ∗ ∈ χ(a); then, a ∈ S,
hence a ′ ∈ S as well, i.e. ∗ ∈ χ(a ′).

We then have that χ is an implicative morphism A → Ω.

i. If a ∈ S, then by definition ∗ ∈ χ(a), which means that χ(a) = {∗}.
ii. Let a,a ′ ∈ A. Then, {∗} ⊆ χ(a → a ′) → χ(a) → χ(a ′) is equivalent

to χ(a→ a ′) ⊆ χ(a) → χ(a ′). To show this, suppose ∗ ∈ χ(a→ a ′),
meaning that a→ a ′ ∈ S. So, χ(a→ a ′) = {∗}, which means that we
can show equivalently that χ(a) ⊆ χ(a ′). Suppose then ∗ ∈ χ(a) as
well, meaning that a ∈ S; by modus ponens, it follows that a ′ ∈ S,
i.e. ∗ ∈ χ(a ′).

2 Ω is the initial object in the category of frames, and coincides with 2 := {⊥ ⩽ ⊤} in a
classical metatheory.

5.1 implicative morphisms 45

As promised above, the definition of an implicative morphism can be
restated purely in terms of the logical order.

Lemma 5.7. Let A = (A,≼,→,SA) and B = (B,≼,→,SB) be arrow algebras.
A function f : A → B is an implicative morphism A → B if and only if it
satisfies:

1. ⊤ ⊢ f(⊤);

2. f(π1 → π2) ⊢A×A fπ1 → fπ2, where π1,π2 : A×A → A are the two
projections;

3. fϕ ⊢I fψ for any set I and all ϕ,ψ : I→ A such that ϕ ⊢I ψ.

Proof. Condition (2) is a rewriting of condition (ii) recalling that the Heyt-
ing implication in AA×A is computed pointwise, and condition (3) is a
rewriting of condition (iii).

Suppose now f satisfies (i), (ii) and (iii). Then, f(⊤) ∈ SB since ⊤ ∈ SA,
which means that ⊤ ⊢ f(⊤).

Conversely, suppose that f satisfies (1), (2) and (3). Note that condition (3)
implies that f is monotone with respect to the logical order: therefore, for
a ∈ SA we have that ⊤ ⊢ a, and hence f(⊤) ⊢ f(a). Then, ⊤ ⊢ f(⊤) implies
by modus ponens that f(⊤) ∈ SB, from which f(a) ∈ SB as well.

Corollary 5.8. If f : A → B is an implicative morphism and f ′ : A→ B is such
that f ⊣⊢A f ′ in BA, then f ′ is an implicative morphism A → B as well.

Many implicative morphisms we will see in the following are monotone
with respect to the evidential ordering: as it turns out, this can always be
assumed up to isomorphism. Therefore, in principle, we could substitute
ArrAlg for an equivalent category where all morphisms are monotone;
however, we won’t go in this direction, for reasons which will become
clear in the next chapter.

Recall that, for any arrow algebra A, we can consider the nucleus
∂x := ⊤ → x, which satisfies idA ⊣⊢A ∂.

Lemma 5.9. Every implicative morphism is isomorphic to a monotone one.

Proof. Let f : A → B be an implicative morphism and consider the mono-
tone function:

f ′ : A→ B f ′(a) := ⋏
a≼a ′

∂f(a ′)

5.1 implicative morphisms 46

Let us show that f ⊣⊢A f ′, which in particular implies that f ′ is an
implicative morphism A → B by the previous corollary.

On one hand, ∂ ⊢B idB gives:

⋏
a

(∂f(a)) → f(a) ∈ SB

from which, since ⋏a≼a ′ ∂f(a ′) ≼ ∂f(a) and by upward-closure of SB:

⋏
a

(⋏
a≼a ′

∂f(a ′)) → f(a) ∈ SB

i.e. f ′ ⊢A f.
On the other hand, f ⊢A f ′ explicitly reads as:

⋏
a

f(a) →

⎛⎝⋏
a≼a ′

∂f(a ′)

⎞⎠ ∈ SB

Note that, since a ∈ SB:

⋏
a

⎛⎝⋏
a≼a ′

f(a) → ⊤ → f(a ′)

⎞⎠→ f(a) →

⎛⎝⋏
a≼a ′

⊤ → f(a ′)

⎞⎠ ∈ SB

Therefore, f ⊢A f ′ is ensured by Proposition 4.2 if we show:

⋏
(a,a ′)∈I

f(a) → ∂f(a ′) ∈ SB

where I := { (a,a ′) ∈ A×A | a ≼ a ′ }. By intuitionistic reasoning, this is
ensured by:

⋏
(a,a ′)∈I

f(a) → f(a ′) ∈ SB (1)

⋏
(a,a ′)∈I

f(a ′) → ∂f(a ′) ∈ SB (2)

where (1) follows since f is an implicative morphism and i ∈ SA witnesses

⋏(a,a ′)∈I a→ a ′ ∈ SA, and (2) since idB ⊢B ∂.

As a matter of fact, the previous construction is pseudofunctorial; this
will be useful in Section 7.1.

Proposition 5.10. For any implicative morphism f : A → B, let Mf : A → B

be the monotone implicative morphism f ′ defined in the previous lemma. Then,
M is a pseudofunctor ArrAlg → ArrAlg.

Proof. Follows immediately since Mf ⊣⊢ f for all implicative morphisms
f : A → B.

5.2 examples 47

5.2 examples

Besides the easy examples seen above, let us see the two main classes of
implicative morphisms, corresponding to the examples of arrow algebras
seen in Section 4.2: those arising from frame homomorphisms, and those
arising from morphisms of PCAs.

frames As we know, every frame can be canonically seen as an arrow
algebra by choosing {⊤} as the separator.

Then, any morphism of frames f : O(Y) → O(X), a (necessarily mono-
tone) function preserving finite meets and arbitrary joins, is also an im-
plicative morphism. Indeed:

i. f(⊤) = ⊤ as f preserves finite meets;

ii. for y,y ′ ∈ O(Y) we know that y∧ (y→ y ′) ⩽ y ′, so by monotonicity
and meet-preservation f(y)∧ f(y→ y ′) ⩽ f(y ′), meaning that f(y→
y ′) ⩽ f(y) → f(y ′) and therefore ⊤ ⩽ f(y→ y ′) → f(y) → f(y ′).

Remark 5.11. As emerges from the above proof, note more generally that
any monotone function f : O(Y) → O(X) which preserves finite meets is an
implicative morphism.

Recall moreover that Frm is preorder-enriched by the pointwise order:
therefore, given two frame homomorphisms f, f ′ : O(Y) → O(X), f ⩽ f ′ in
Frm(O(Y),O(X)) if and only if f ⊢ f ′ in ArrAlg(O(Y),O(X)), since ⊢I coin-
cides with the pointwise order for any set I. In other words, the inclusion
determines a 2-functor Frm → ArrAlg with the additional property that
each map Frm(O(Y),O(X)) ↪→ ArrAlg(O(Y),O(X)) (preserves and) reflects
the order.

While obviously faithful, this inclusion is far from being full. Indeed, con-
sider the initial frame Ω and let O(X) be a frame such that ⊥ ̸= ⊤: then, the
unique frame homomorphism Ω → O(X) is given by p ↦→

⋁︁
{⊤ | ∗ ∈ p },

whereas the constant function of value ⊤ is an implicative morphism
Ω → O(X). As we will see in Section 6.4, frame homomorphisms coin-
cide with computationally dense implicative morphisms, while implicative
morphisms between frames coincide simply with monotone functions
preserving finite meets – hence reversing the previous remark.

5.2 examples 48

partial combinatory algebras Let A = (A,⩽, ·,A#) and B =

(B,⩽, ·,B#) be two PCAs. Let us start by showing how every morphism
of PCAs DA → DB is an implicative morphism with respect to the
canonical arrow structures on DA and DB.

We warn the reader here that we will seeDA andDB simultaneously as
PCAs as in Definition 3.5 and as arrow algebras as described in Section 4.2.
Both structures possess a notion of application, and in general the two do
not coincide: for example, given α,β ∈ DA, the inequality

(α→ β) ·α ⊆ β

only holds with respect to the application defining the partial applicative
structure onDA, while it does not hold for the arrow-algebraic application
of Definition 4.11.3 In this thesis, we will not make any use of the latter
form of application when dealing with arrow algebras of the form DA;
hence, the application considered will always be the one defining the
partial applicative structure.

Lemma 5.12. Let f : DA → DB be a morphism of PCAs. Then, f is also an
implicative morphism DA → DB.

Proof. Let us verify the three conditions in Definition 5.1.

i. Condition (i) is ensured by (i) in Definition 3.7 since SDA = (DA)#

and SDB = (DB)#.

ii. To show condition (ii), we need to find some ρ ∈ (DB)# such that
ρ ⊆ f(α→ β) → f(α) → f(β) for all α,β ∈ DA. By definition, recall
that:

– there exists τ ∈ (DB)# such that if αα ′↓, then τf(α)f(α ′)↓ and
τf(α)f(α ′) ⊆ f(αα ′);

– there exists υ ∈ (DB)# such that if α ⊆ α ′ then υf(α)↓ and
υf(α) ⊆ f(α ′).

By combinatory completeness, consider then:

ρ := (λ∗v,w.υ(τvw)) ∈ (DB)#

Since (α→ β) ·α↓, we know that:

τ f(α→ β) f(α)↓ and τ f(α→ β) f(α) ⊆ f((α→ β) ·α)

3 For this other application, we only have the inequality (α → ∂β) · α ⊆ ∂β, where ∂β :=
A→ β.

5.2 examples 49

Since moreover (α→ β) ·α ⊆ β, we also know that:

υ f((α→ β) ·α)↓ and υ f((α→ β) ·α) ⊆ f(β)

So, by downward-closure of the domain of the application:

υ(τ f(α→ β) f(α))↓ and υ(τ f(α→ β) f(α)) ⊆ f(β)

Therefore:

ρ f(α→ β) f(α)↓ and ρ f(α→ β) f(α) ⊆ f(β)

or, in other words:

ρ ⊆ f(α→ β) → f(α) → f(β)

iii. Let X ⊆ DA×DA be such that there exists some σ ∈ (DA)# satisfy-
ing σ ⊆ α→ β for all (α,β) ∈ X. To show condition (iii), we need to
find some ρ ∈ (DB)# such that ρ ⊆ f(α) → f(β) for all (α,β) ∈ X.

By combinatory completeness, since f(σ) ∈ (DB)# by condition (i),
consider then:

ρ := (λ∗w.υ(τf(σ)w)) ∈ (DB)#

Since σ ·α↓ and σ ·α ⊆ β, exactly as above we have that:

υ(τ f(σ) f(α))↓ and υ(τ f(σ) f(α)) ⊆ f(β)

Therefore:

ρ f(α)↓ and ρ f(α) ⊆ f(β)

or, in other words:

ρ ⊆ f(α) → f(β)

Remark 5.13. The two orders also coincide, by definition of the implication
in downsets PCAs: given two morphisms of PCAs f, f ′ : DA → DB, then
f ⩽ f ′ in OPCA(DA,DB) if and only if f ⊢ f ′ in ArrAlg(DA,DB).

Let now f : A → B be a partial applicative morphism, i.e. a morphism
of PCAs A → DB. Recall that f corresponds essentially uniquely to the
D-algebra morphism:˜︁f : DA → DB ˜︁f(α) := ⋃︂

a∈α
f(a)

5.2 examples 50

and the assignment f ↦→ ˜︁f is 2-functorial on OPCAD. Together with the
previous lemma and remark, this immediately implies the following.

Proposition 5.14. The assignment f ↦→ ˜︁f determines a 2-functor:˜︁D : OPCAD ArrAlg

Moreover, for any PCAs A and B, the map:

OPCAD(A, B) ArrAlg(DA,DB)

(preserves and) reflects the order.

Remark 5.15. The maps OPCAD(A, B) → ArrAlg(DA,DB) defined by ˜︁D
are obviously not essentially surjective, meaning that ˜︁D is not 2-fully
faithful. Indeed, any morphism of PCAs DA → DB is an implicative mor-
phism DA → DB, but obviously only those which are union-preserving
are D-algebra morphisms and therefore arise as ˜︁Df for some partial ap-
plicative morphism f : A → B. We will see more about the interplay of
these notions in Section 6.4.

Question. How does the PER(−) construction behave with respect to
(partial applicative) morphisms of PCAs and implicative morphisms?

6
A R R O W T R I P O S E S

We have finally arrived at the heart of this thesis. In this chapter, we
further the study of implicative morphisms and their relations with trans-
formations of arrow triposes, lifting the association A ↦→ PA to a (2-)functor
defined on a suitable category of arrow algebras. The main goals, in this
perspective, are the following.

i. First, we will characterize implicative morphisms A → B as those
functions A → B which induce by postcomposition a left exact
transformation of arrow triposes PA → PB.

ii. Then, we will determine a suitable notion of computational density
which characterizes those implicative morphisms A → B such that
the induced transformation PA → PB has a right adjoint, hence
corresponding to geometric morphism of triposes PB → PA.

iii. Finally, we will specify the previous correspondence to the case
of geometric inclusions PB ↪→ PA and see how they correspond to
nuclei on A.

To motivate this, let us reconsider the examples seen in the previous
chapter.

frames The localic tripos PO(X) over a frame O(X) coincides with the
arrow tripos obtained seeing O(X) as an arrow algebra in the canonical way.
By [35] we know that any frame homomorphism f∗ : O(X) → O(Y) induces
a geometric morphism of triposes PO(Y) → PO(X) whose inverse image is
given by postcomposition with f∗ at each component; as we have shown
in the previous chapter, f∗ is an implicative morphism O(X) → O(Y).

Moreover, the direct image is given by postcomposition with f∗ : O(Y) →
O(X) at each component, where f∗ is the right adjoint of f∗ as maps of
posets – which always exists for frame homomorphisms.

51

6.1 left exact transformations of arrow triposes 52

partial combinatory algebras The realizability tripos PA over a
PCA A coincides with the arrow tripos PDA obtained seeing DA as an
arrow algebra in the canonical way. As we have seen in Chapter 3, any
partial applicative morphism f : A → B induces a left exact transformation
of triposes PA → PB given by postcomposition with ˜︁f : DA→ DB at each
component; as we’ve shown in the previous chapter, ˜︁f is an implicative
morphism DA → DB.

Moreover, the induced left exact transformation admits a right adjoint
making it the inverse image of a geometric morphism PB → PA if and
only if f is computationally dense, in which case the direct image is given
by postcomposition with h : DB → DA, where h is the right adjoint of ˜︁f
in OPCA – which is equivalent to the computational density of f.

6.1 left exact transformations of arrow triposes

Let us start with a lemma we will make use of in the following. Recall
that, given two arrow algebras A = (A,≼,→,SA) and B = (B,≼,→,SB),
for every set I we can consider the arrow algebras AI = (AI,≼,→,SIA)
and BI = (BI,≼,→,SIB) as in Definition 4.21.

Lemma 6.1. Let f : A → B be an implicative morphism.
For any set I, fI := f ◦− is an implicative morphism AI → BI.

Proof. Let us verify the three conditions in Definition 5.1.

i. To show condition (i), recall that we can equivalently prove that
fI(⊤I) ∈ SIB, where ⊤I : I → A is the constant function of value
⊤ ∈ A. Note then that by condition (i) for f we have:

⋏
i

f(⊤I(i)) =⋏
i

f(⊤) = f(⊤) ∈ SB

meaning that fI(⊤) ∈ SIB.

ii. Let r ∈ SB be a realizer for f and let ρ : I → B be the constant
function at r; as ⋏i ρ(i) = r ∈ SB, we know that ρ ∈ SIB.

Then, for any ϕ,ϕ ′ ∈ AI:

r ≼ f(ϕ(i) → ϕ ′(i)) → fϕ(i) → fϕ ′(i) ∀i ∈ I

i.e., since the order and implications are defined pointwise in BI:

ρ ≼ fI(ϕ→ ϕ ′) → fIϕ→ fIϕ ′

6.1 left exact transformations of arrow triposes 53

meaning that ρ realizes fI.

iii. Let X ⊆ AI×AI be such that ⋏(ϕ,ψ)∈Xϕ→ ψ ∈ SIA. For the sake of
notation, assume X =

{︁
(ϕj,ψj)

⃓⃓
j ∈ J

}︁
; then, since the order (hence

meets) and implications are defined pointwise in AI, we have:

⋏
i

⋏
j

ϕj(i) → ψj(i) ∈ SA

from which, by (iii) for f:

⋏
i

⋏
j

fϕj(i) → fψj(i) ∈ SA

meaning that ⋏j f
Iϕj → fIψj ∈ SIA.

Fix now an implicative morphism f : A → B and define the transforma-
tion:

Φ+
f : PA → PB (Φ+

f)I(ϕ) := f
Iϕ = f ◦ϕ

Indeed, monotonicity of each component (Φ+
f)I : PA(I) → PB(I) precisely

corresponds to condition (iii) in Definition 5.1, while naturality is obvious.
Let us now show that, for every set I, (Φ+

f)I : PA(I) → PB(I) pre-
serves finite meets up to isomorphism. As fI(⊤I) ∈ SIB we know that
fI(⊤I) ⊣⊢I ⊤I, so we only have to show that for any ϕ,ψ ∈ AI:

fI(ϕ×ψ) ⊣⊢I fIϕ× fIψ

where fIϕ× fIψ is the meet of fIϕ and fIψ in PB(I) which, we recall from
Remark 4.23, can be assumed to be defined pointwise.

Of course fI(ϕ×ψ) ⊢I fIϕ× fIψ follows simply by monotonicity of fI

with respect to the logical order; on the other hand, fIϕ× fIψ ⊢I fI(ϕ×ψ)
is ensured by the following lemma applied to fI : AI → BI.

Lemma 6.2. Let f : A → B be an implicative morphism. Then:

⋏
a,b

(f(a)× f(b)) → f(a× b) ∈ SB

Proof. First, recall that:

⋏
a,b

a→ b→ (a× b) ∈ SA

6.1 left exact transformations of arrow triposes 54

from which, by (iii) in Definition 5.1:

⋏
a,b

f(a) → f(b→ (a× b)) ∈ SB

whereas, by (ii):

⋏
a,b

f(b→ (a× b)) → f(b) → f(a× b) ∈ SB

so by intuitionistic reasoning we conclude:

⋏
a,b

f(a) → f(b) → f(a× b) ∈ SB

which means:

⋏
a,b

(f(a)× f(b)) → f(a× b) ∈ SB

Summing up, we have shown the following.

Proposition 6.3. Let f : A → B be an implicative morphism. Then:

Φ+
f : PA → PB (Φ+

f)I(ϕ) := f ◦ϕ

is a left exact transformation of triposes.

As promised above, we can also prove the converse: up to isomorphism,
every left exact transformation of arrow triposes is induced in the sense of
the previous proposition by an implicative morphism which is unique up
to isomorphism.

Proposition 6.4. The association f ↦→ Φ+
f determines a 2-fully faithful 2-functor:

ArrAlg Triplex(Set)

Explicitly, this means that for any arrow algebras A and B there is an equiva-
lence of preorder categories:

ArrAlg(A,B) ≃ Triplex(Set)(PA,PB)

Proof. By the previous discussion, we have a functor ArrAlg → Triplex(Set);
2-functoriality amounts to showing that given any two implicative mor-
phisms f, f ′ : A → B such that f ⊢ f ′, then Φ+

f ⩽ Φ+
f ′ . By definition,

f ⊢ f ′ means that fϕ ⊢I f ′ϕ holds for any set I and any ϕ : I → A, i.e.
(Φ+
f)I(ϕ) ⊢I (Φ

+
f ′)I(ϕ) holds in PB(I), which means means that Φ+

f ⩽ Φ+
f ′ .

6.1 left exact transformations of arrow triposes 55

Note then that the converse also holds: if Φ+
f ⩽ Φ+

f ′ , then in particular
(Φ+
f)A(idA) ⊢A (Φ+

f ′)A(idA), which means that f ⊢ f ′.
Let nowΦ+ : PA → PB be any left exact transformation of arrow triposes.

Recall that, up to isomorphism, Φ+ is given by postcomposition with the
function:

f := (Φ+)A(idA) : A→ B

Let us now verify that f satisfies the three conditions1 in Definition 5.1.

i. To show condition (i), recall that we can equivalently prove that
f(⊤) ∈ SB. By left exactness we know that (Φ+)I(⊤I) ⊣⊢I ⊤I, which
for I := 1 means that f(⊤) ⊣⊢ ⊤, i.e. f(⊤) ∈ SB.

ii. Let I := A×A; recall that condition (ii) can be rewritten as:

f(π1 → π2) ⊢I fπ1 → fπ2

where π1,π2 : I → A are the two projections. In terms of Φ+, this
means that we have to show:

(Φ+)I(π1 → π2) ⊢I (Φ+)I(π1) → (Φ+)I(π2)

Through the Heyting adjunction in PB(I), the previous is equivalent
to:

(Φ+)I(π1 → π2)× (Φ+)I(π1) ⊢I (Φ+)I(π2)

i.e., by left exactness:

(Φ+)I(π1 → π2 × π1) ⊢I (Φ+)I(π2)

which is ensured by monotonicity since π1 → π2 × π1 ⊢I π2.

iii. Condition (iii) precisely corresponds to the monotonicity of each
component (Φ+)I.

Therefore, the association Φ+ ↦→ (Φ+)A(idA) realizes the desired in-
verse equivalence since obviously (Φ+

f)A(idA) = f for all implicative
morphisms f : A → B.

Remark 6.5. Recall by [29] that2 every Set-based tripos is isomorphic to
an implicative one, and hence to an arrow one. Therefore, the 2-functor
ArrAlg → Triplex(Set) is actually a 2-equivalence of 2-categories.

1 If we assumed implicative morphisms to be monotone, we would not be able to prove that
f is one.

2 At least, assuming the Axiom of Choice.

6.2 geometric morphisms of arrow triposes 56

6.2 geometric morphisms of arrow triposes

right adjoints and geometric morphisms Let us now move to
geometric morphisms: as we will see in a moment, the existence of a right
adjoint at the level of transformations of triposes exactly corresponds to
the existence of a right adjoint in ArrAlg.

Definition 6.6. An implicative morphism f : A → B is computationally
dense3 if it admits a right adjoint in ArrAlg, that is, if there exists an
implicative morphism h : B → A such that fh ⊢ idB and idA ⊢ hf.

For any arrow algebra A, the identity idA : A → A is computation-
ally dense, as it is trivially right adjoint to itself. The following lemma,
therefore, allows us to define the wide subcategory ArrAlgcd of ArrAlg on
computationally dense morphisms.

Lemma 6.7. Let f : A → B and g : B → C be implicative morphisms. If f and g
are computationally dense, then so is gf.

Proof. Let h : B → A be right adjoint to f and let h ′ : C → B be right
adjoint to g. Let us show that hh ′ : C → A is right adjoint to gf.

– On one hand, we know that fh ⊢B idB; in particular, fhh ′ ⊢C h ′.
Then, gfhh ′ ⊢C gh ′ as g is an implicative morphism, and hence
gfhh ′ ⊢C idC since gh ′ ⊢C idC.

– On the other, we know that idB ⊢B h ′g; in particular, f ⊢A h ′gf.
Then, hf ⊢A hh ′gf as h is an implicative morphism, and hence
idA ⊢A hh ′gf since idA ⊢ hf.

Fix now a computationally dense implicative morphism f : A → B with
right adjoint h : B → A and consider the left exact transformation induced
by h as in Proposition 6.3:

Φ+ : PB → PA (Φ+)I(ϕ) := h ◦ϕ

Lemma 6.8. For every set I, (Φ+)I : PB(I) → PA(I) is right adjoint to the map
(Φ+
f)I : ψ ↦→ f ◦ψ.

3 The name is obviously taken from the theory of PCAs, and it is also used in [36] in the
context of applicative morphisms.

6.2 geometric morphisms of arrow triposes 57

Proof. By the universal property of the counit of the adjunction, it suffices
to show that for all ϕ : I→ B:

1. fhϕ ⊢I ϕ in PB(I);

2. for any ψ : I→ A such that fψ ⊢I ϕ in PB(I), then ψ ⊢I hϕ in PA(I).

(1) clearly follows as h is right adjoint to f. To show (2), instead, suppose
fψ ⊢I ϕ; then, hfψ ⊢I hϕ as h is an implicative morphism, and hence
ψ ⊢I hψ since idA ⊢A hf.

The results of the previous section then immediately yield the following.

Theorem 6.9. Let f : A → B be a computationally dense implicative morphism
with right adjoint h : B → A. Then:

PB PA

Φ+

Φ+

⊣

⎧⎨⎩(Φ+)I(ψ) := f ◦ψ

(Φ+)I(ϕ) := h ◦ψ

is a geometric morphism of triposes.

As we did for implicative morphisms and left exact transformations,
in this case too we can prove the converse: up to isomorphism, every
geometric morphism of arrow triposes is induced by an essentially unique
computationally dense implicative morphism.

Proposition 6.10. The 2-functor of Proposition 6.4 restricts to a 2-fully faithful
2-functor:

ArrAlgcd Tripgeo(Set)

Explicitly, this means that for any arrow algebras A and B there is an equiva-
lence of preorder categories:

ArrAlgcd(A,B) ≃ Tripgeo(Set)(PA,PB)

Proof. By the previous section and the previous discussion, we have a 2-
functor ArrAlgcd → Tripgeo(Set) such that, given any two computationally
dense implicative morphisms f, f ′ : A → B, f ⊢ f ′ if and only if Φ+

f ⩽ Φ+
f ′ .

Let now Φ+ : PA → PB be a left exact transformation of triposes having
a right adjoint Φ+ : PB → PA. Recall that, up to isomorphism, Φ+ is
given by postcomposition with f := (Φ+)A(idA) : A → B, which is an
implicative morphism A → B by Proposition 6.4. In the same way, as

6.2 geometric morphisms of arrow triposes 58

it is also left exact, Φ+ is given up to isomorphism by postcomposition
with the implicative morphism h := (Φ+)B(idB) : B → A. Moreover, the
adjunction between Φ+ and Φ+ directly yields fh ⊢ idB and idA ⊢ hf,
meaning that h is right adjoint to f making it computationally dense.

Remark 6.11. As in Remark 6.5, the 2-functor ArrAlgcd → Tripgeo(Set) is a
2-equivalence of 2-categories.4

equivalences With usual 2-categorical notation, we say that an im-
plicative morphism f : A → B is an equivalence if there exists another
implicative morphism g : B → A such that fg ⊣⊢ idB in ArrAlg(B,B) and
gf ⊣⊢ idA in ArrAlg(A,A), in which case g is a quasi-inverse of f. Two arrow
algebras are then equivalent if there exists an equivalence between them;
clearly, equivalent arrow algebras induce equivalent triposes.

Lemma 6.12. Let f : A → B be an equivalence of arrow algebras.
Then, f is computationally dense, and the induced geometric morphism of

triposes Φ : PB → PA is an equivalence.

Proof. Let g : B → A be a quasi-inverse of f. As g is in particular right ad-
joint to f in ArrAlg, f is computationally dense, and the induced geometric
morphism Φ : PB → PA is given by:

(Φ+)I(ψ) = f ◦ψ (Φ+)I(ϕ) = g ◦ϕ

In particular, Φ+Φ+ and Φ+Φ
+ are isomorphic to identities as fg ⊣⊢ idB

and gf ⊣⊢ idA, meaning that Φ is an equivalence.

By the previous results, we can also easily address the converse.

Proposition 6.13. Let Φ : PA → PB be an equivalence of arrow triposes. Then,
Φ is induced up to isomorphism by an (essentially unique) equivalence of arrow
algebras f : A → B.

Proof. Let Ψ : PB → PA be a quasi-inverse of Φ. Then, Φ is both left and
right adjoint to Ψ, which means in particular that the pair (Φ,Ψ) defines
a geometric morphism PB → PA. Therefore, by Proposition 6.10, Φ is
induced up to isomorphism by an (essentially unique) computationally
dense implicative morphism f : A → B; a right adjoint g : B → A inducing

4 Again, assuming the Axiom of Choice.

6.3 inclusions and surjections 59

Ψ up to isomorphism then satisfies fg ⊣⊢ idB and gf ⊣⊢ idA, making f an
equivalence.

Remark 6.14. We say that an arrow algebra A is trivial if S = A, or equiva-
lently if ⊥ ∈ S.

It is then immediate to show that A is trivial if and only if the unique
map A → {∗} – which is obviously an implicative morphism – is an
equivalence. Hence, A is trivial if and only if AT(A) is (equivalent to) the
trivial topos.

6.3 inclusions and surjections

Let us start this section by characterizing inclusions and surjections of
arrow triposes.

Recall that a geometric morphism of arrow triposes Φ : PB → PA is
an inclusion if (Φ+)I reflects the order for any set I, or equivalently if
(Φ+)I(Φ+)I(ϕ) ⊣⊢I ϕ for any set I and any ϕ : I → B. Dually, Φ is
a surjection if (Φ+)I reflects the order for any set I, or equivalently if
(Φ+)I(Φ

+)I(ϕ) ⊣⊢I ϕ for any set I and any ϕ : I→ A.
Recall moreover the following general definition.

Definition 6.15. Let C be a preorder-enriched category. An arrow f : A→ B

in C is a lax epimorphism if, for all C ∈ C, the map

− ◦ f : C(B,C) → C(A,C)

is fully-faithful as a functor between preorder categories, which explicitly
means that p ⩽ q for all p,q : B→ C such that pf ⩽ qf.

Dually, f is a lax monomorphism if, for all C ∈ C, the map

f ◦− : C(C,A) → C(C,B)

is fully-faithful as a functor between preorder categories, which explicitly
means that p ⩽ q for all p,q : C→ A such that fp ⩽ fq.

Definition 6.16. A computationally dense implicative morphism f : A → B

is an implicative surjection (resp. implicative injection) if it is a lax epimor-
phism (resp. lax monomorphism) in ArrAlg.

Proposition 6.17. Let f : A → B be a computationally dense implicative
morphism with right adjoint h : B → A and let Φ : PB → PA be the induced
geometric morphism of arrow triposes. The following are equivalent:

6.3 inclusions and surjections 60

1. Φ is an inclusion;

2. fh ⊣⊢B idB;

3. f is an implicative surjection.

Dually, the following are equivalent:

1. Φ is a surjection;

2. hf ⊣⊢A idA;

3. f is an implicative injection.

Proof. For (1) ⇔ (2), recall that the inverse image Φ+ is given by postcom-
position with f, and the direct image Φ+ is given by postcomposition with
h: therefore, Φ is an inclusion if and only if fhϕ ⊣⊢I ϕ for any set I and
any ϕ ∈ PB(I), which is equivalent to fh ⊣⊢B idB.

For (2) ⇒ (3), suppose p,q : B → C are such that pf ⊢ qf. Then,
pfh ⊢ qfh, and hence p ⊢ q.

For (3) ⇒ (2), of course fh ⊢ idB; conversely, to show that idB ⊢ fh it
then suffices to show that f ⊢ fhf, which is ensured by idA ⊢ hf.

Corollary 6.18. For any arrow algebras A and B, there are equivalences of
preorder categories between:

– implicative surjections A → B and geometric inclusions PB ↪→ PA;

– implicative injections A → B and geometric surjections PB ↠ PA.

Proof. Combining Proposition 6.10 with the previous proposition.

Remark 6.19. Of course, an implicative morphism is an equivalence if and
only if it is both an implicative surjection and an implicative inclusion.

nuclei and subtriposes Let A = (A,≼,→,S) be an arrow algebra.
As we have seen in Proposition 4.7, every nucleus j on A determines a

new arrow algebra Aj = (A,≼,→j,Sj) where:

a→j b := a→ jb Sj := { a ∈ A | ja ∈ S }

With the previous machinery, [2, Prop. 6.3] can then be reduced to the
following observation.

Lemma 6.20. idA is an implicative surjection A → Aj, with j as a right adjoint.

6.3 inclusions and surjections 61

Proof. Let us start by showing that idA is an implicative morphism A → Aj.
As the evidential order is the same in A and Aj, we only have to verify (i)
and (ii) in Definition 5.1.

i. If a ∈ S, then ja ∈ S, meaning that a ∈ Sj.
ii. Condition (ii) explicitly reads as:

⋏
a,a ′

(a→ a ′) →j a→j a
′ ∈ Sj

i.e.:

j

⎛⎝⋏
a,a ′

(a→ a ′) → j(a→ ja ′)

⎞⎠ ∈ S

so, by (ii) in Definition 4.6, it suffices to show:

⋏
a,a ′

(a→ a ′) → j(a→ ja ′) ∈ S

This, in turn, follows by intuitionistic reasoning from:

⋏
a,a ′

(a→ a ′) → a→ ja ′ ∈ S

⋏
a,a ′

(a→ ja ′) → j(a→ ja ′) ∈ S

which follow from (ii) Definition 4.6.

Then, let us show that j is an implicative morphism Aj → A: again,
recall that j is monotone by definition, so we only have to verify (i) and (ii)
in Definition 5.1.

i. If a ∈ Sj, then by definition ja ∈ S.

ii. Condition (ii) explicitly reads as:

⋏
a,a ′

j(a→ ja ′) → ja→ ja ′ ∈ S

which follows from intuitionistic reasoning from:

⋏
a,a ′

j(a→ ja ′) → ja→ jja ′ ∈ S

⋏
a ′

jja ′ → ja ′ ∈ S

Finally, let us show that j : Aj → A is right adjoint to idA : A → Aj in
ArrAlg.

6.3 inclusions and surjections 62

– On one hand, j ⊢jA idA explicitly reads as j ⊢A j, which is clearly
true.

– On the other, idA ⊢A j is true as j is a nucleus.

Moreover, we also have that idA ⊢jA j as it explicitly reads as idA ⊢A jj,
which makes idA an implicative surjection by Proposition 6.17.

Corollary 6.21. Every nucleus j on A induces a geometric inclusion of triposes
PAj ↪→ PA, given by:

PAj PA

idA◦−

j◦−
⊣

However, we are now in the position to do more than that: namely, we
can recover Corollary 2.32 and hence a converse to the previous through
nuclei.

Recall in fact by the discussion in Chapter 2 that we have an equivalence
of preorder categories between subtriposes of PA and closure transforma-
tions on PA, that is, transformations Φj : PA → PA which are left exact,
inflationary and idempotent:

SubTrip(PA) ≃ ClTrans(PA)
op

Note then that, given a closure transformation Φj on PA, the function
j := (Φj)A(idA) : A → A inducing it up to isomorphism satisfies the
following:

i. j is an implicative morphism A → A;

ii. idA ⊢ j;
iii. jj ⊣⊢ j.

Assuming j to be monotone with respect to the evidential order in A as in
Lemma 5.9, this means that j satisfies (i), (ii), (iv) and (vi) in Definition 4.6,
which as we’ve noted suffice to make j into a nucleus. Of course, the
converse is also true – that is, nuclei induce by postcomposition transfor-
mations which are left exact, inflationary and idempotent – since, as we
know, every nucleus on A is an implicative morphism A → A. Since the
association j ↦→ Φj also preserves and reflects the order, we conclude with
the following.

6.3 inclusions and surjections 63

Proposition 6.22. Let N(A) be the set of nuclei on A, with the preorder induced
by PA(A). Then, Proposition 6.4 yields an equivalence of preorder categories:

ClTrans(PA) ≃ N(A)

so, in particular:

SubTrip(PA) ≃ N(A)op

Corollary 6.23. Every geometric inclusion of toposes into AT(A) is induced, up
to equivalence, by a geometric inclusion of triposes of the form:

PAj PA

idA ◦−

j◦−

⊣
for some nucleus j on A.

Remark 6.24. By definition of Aj, note therefore how PAj coincides precisely
with the tripos Pj described before Corollary 2.32. For this reason, we will
usually refer to PAj simply as Pj.

We conclude this part with the following alternative description of Pj,
already noted in the general case in [34] and then in the context of arrow
algebras in [2].

Proposition 6.25. Let j be a nucleus on an arrow algebra A. Then, Pj is equiva-
lent over PA to the tripos defined by:

Qj(I) := {α ∈ PA(I) | jα ⊢I α }

with the Heyting prealgebra structure induced by PA(I).

Proof. Consider the pair of transformations:

Θ+ := idA◦− : Qj → Pj Θ+ := j ◦− : Pj → Qj

obviously well-defined since so is the geometric morphism Pj ↪→ PA above,
and as jj ⊢A j. Then, Θ+ and Θ+ define an equivalence of triposes between
Pj and Qj.

– The fact that Θ+Θ+ ≃ idPj is equivalent, by Proposition 6.4, to
j ⊣⊢jA idA: on one hand, idA ⊢jA j explicitly means idA ⊢A jj, which
follows from idA ⊢A j; on the other, j ⊢jA idA explicitly means j ⊢A j,
which follows by reflexivity.

6.3 inclusions and surjections 64

– To show that Θ+Θ
+ ≃ idQj we need to show that jα ⊣⊢I α for every

set I and every α ∈ Qj(I): on one hand, α ⊢I jα follows by idA ⊢A j;
on the other, jα ⊢I α follows by definition of Qj(I).

Therefore, Qj is equivalent to Pj; through the equivalence, the geometric
inclusion of Qj in PA is given by:

Qj PA

j◦−

j◦−

⊣

a factorization theorem As it is known, every geometric mor-
phism of toposes can be factored as a geometric surjection followed by a
geometric inclusion. Generalizing locale theory, let us recover the same
result in the framework of arrow algebras; in doing so, we will also make
the correspondence between subtriposes and nuclei more explicit.

Let f : A → B be a computationally dense implicative morphism with
right adjoint h : B → A; by Lemma 5.9, up to isomorphism we can assume
both f and h to be monotone with respect to the evidential order. First,
observe the following.

Lemma 6.26. hf : A → A is a nucleus on A.

Proof. Let us verify that hf satisfies the three conditions in Definition 4.6.

i. hf is monotone by composition.

ii. Clearly idA ⊢ hf as h is right adjoint to f.

iii. Let I := A×A; note that condition (iii) can be rewritten as:

π1 → hfπ2 ⊢I hfπ1 → hfπ2

where π1,π2 : I → A are the obvious projections. Through the
Heyting adjunction in PA(I), this is equivalent to:

(π1 → hfπ2)× hfπ1 ⊢I hfπ2

and hence, since h ◦− is right adjoint to f ◦−, which preserves finite
meets, to:

f(π1 → hfπ2)× fhfπ1 ⊢I fπ2
Therefore, since fhfπ1 ⊢I fπ1 as fh ⊢ idB, it suffices to show:

f(π1 → hfπ2)× fπ1 ⊢I fπ2

6.3 inclusions and surjections 65

i.e., again through the Heyting adjunction in PB(I):

f(π1 → hfπ2) ⊢I fπ1 → fπ2

which in turn follows since, by (ii) in Definition 5.1:

f(π1 → hfπ2) ⊢I fπ1 → fhfπ2

and again fhfπ2 ⊢I fπ2.

A natural question is then to relate f to j := hf, and in particular the
geometric morphism Φf : PB → PA induced by f with the inclusion
Φj : Pj ↪→ PA induced by j. To this aim, recall here that fh ⊢ idB and
idA ⊢ hf imply fhf ⊣⊢ f and hfh ⊣⊢ h.

Lemma 6.27. f is an implicative injection Aj → B, with h as a right adjoint.

Proof. Let us start by showing that f is an implicative morphism Aj → B.

i. Let a ∈ Sj; by definition, hf(a) ∈ SA, so fhf(a) ∈ SB, and hence
f(a) ∈ SB since fh ⊢ idB.

ii. Condition (ii) explicitly reads as:

⋏
a,a ′

f(a→ ja ′) → f(a) → f(a ′) ∈ SB

which follows by intuitionistic reasoning from:

⋏
a,a ′

f(a→ ja ′) → f(a) → fj(a ′) ∈ SB

⋏
a,a ′

(f(a) → fhf(a ′)) → f(a) → f(a ′) ∈ SB

where the latter follows since fhf ⊢ f.

Note now that h : B → A is an implicative morphism B → Aj since it
is an implicative morphism B → A and idA is an implicative morphism
A → Aj. Then, we have that h : B → Aj is right adjoint to f : Aj → B:

– clearly fh ⊢ idB;

– on the other hand, idA ⊢j hf explicitly reads as idA ⊢A hfhf, which
follows from idA ⊢A hf.

Moreover, we also have that hf ⊢jA idA as it explicitly reads as hf ⊢A hf,
which makes f : Aj → B an implicative surjection by Proposition 6.17.

6.4 examples 66

Recalling by Lemma 6.20 that idA defines an implicative surjection
A → Aj, we have the following.

Corollary 6.28. Every computationally dense implicative morphism factors as
an implicative surjection followed by an implicative inclusion.

On the level of triposes, this means that the geometric morphism Φf :

PB → PA induced by f factors through Φj : Pj ↪→ PA by means of a
geometric surjection Θf : PB → Pj, also induced by f as a morphism
Aj → B:

PB

PA

Pj

f◦−

h◦−

idA◦−

j◦−

Θf
⊣

⊣

Proposition 6.29. Θf is an equivalence if and only if Φf is an inclusion.

Proof. By Lemma 6.12 and Proposition 6.13, Θf is an equivalence if and
only if f : Aj → B is an equivalence. Since h : B → Aj is right adjoint
to f : Aj → B, this is equivalent to hf ⊢jA idA and idB ⊢ fh, and since
hf ⊢jA idA holds trivially this is equivalent simply to idB ⊢ fh. By Proposi-
tion 6.17, idB ⊢ fh is in turn equivalent to Φf being an inclusion.

Remark 6.30. In essence, this gives us a more explicit description of the
correspondence given in Proposition 6.22, in perfect generalization of
the localic case: indeed, if a subtripos Φ : PB ↪→ PA is induced by an
implicative surjection f : A → B, then it is equivalent to the subtripos
induced by (a nucleus isomorphic to) hf, where h is right adjoint to f.

6.4 examples

We can finally conclude our analysis of the two main classes of arrow
algebras, namely those arising from frames and from PCAs, now studying
their morphisms in relation to the transformations between the associated
triposes.

6.4 examples 67

frames First, recall that frame homomorphisms are implicative mor-
phisms, seeing frames as arrow algebras in the canonical way. More gen-
erally, as noted in Remark 5.11, every monotone map of frames which
preserves finite meets is an implicative morphisms: we can now easily
prove the converse as well. In fact, if f : O(Y) → O(X) is an implicative
morphism, then:

– by definition, f is monotone with respect to the logical order;

– as the separator on a frame is canonically defined as {⊤}, f(⊤) = ⊤;

– by Lemma 6.2, f preserves binary logical meets.

Since the logical order on frames coincides with the evidential order, this
simply means that f is monotone and preserves finite meets.

Moving on, let us see how every frame homomorphism is computation-
ally dense as an implicative morphism.

Proposition 6.31. Let f∗ : O(Y) → O(X) be a frame homomorphism. Then, f∗ is
a computationally dense implicative morphism.

Proof. Let f∗ : O(X) → O(Y) be the right adjoint of f∗, i.e. the monotone
function:

f∗(x) =
⋁︂

{ y | f∗(y) ⩽ x }

As it is monotone and preserves finite meets, f∗ is an implicative morphism
O(X) → O(Y); in particular, it is clearly right adjoint to f∗ in ArrAlg, which
is then computationally dense.

The converse is also true: computationally dense implicative morphisms
between frames are themselves frame homomorphisms. Indeed, let f :

O(Y) → O(X) be a computationally dense implicative morphism between
frames and let h : O(X) → O(Y) be right adjoint to it.

First, note that f is monotone, since the logical and the evidential order
coincide on arrow algebras arising from frames and implicative morphisms
are monotone with respect to the logical order. For the same reason,
Lemma 6.2 implies that f preserves finite meets: indeed, for all y ∈ O(Y)

we know that ⊤ ⩽ (f(y)∧ f(y ′)) → f(y∧ y ′) i.e. f(y)∧ f(y ′) ⩽ f(y∧ y ′),
and therefore f(y)∧ f(y ′) = f(y∧ y ′) as the converse inequality holds by
monotonicity.

6.4 examples 68

Finally, again as the logical and the evidential order coincide, h is
then right adjoint to f as monotone maps between the posets underlying
O(Y) and O(X), which means that f preserves all joins. Therefore, f is a
morphism of frames; summing up, we have shown the following.

Proposition 6.32. The inclusion 2-functor Frm ↪→ ArrAlgcd is 2-fully-faithful.
Explicitly, this means that for any frames O(Y) and O(X) there is an equivalence

of preorder categories:

Frm(O(Y),O(X)) ≃ ArrAlgcd(O(Y),O(X))

Remark 6.33. In essence, this makes so that the canonical embedding of
locales and their homomorphisms into localic triposes and geometric
morphisms factors through arrow algebras and computationally dense
implicative morphisms. In the ‘algebraic’ notation we have been using,
this gives the following diagram:

Frm Tripgeo(Set)

ArrAlgcd

partial combinatory algebras The results of this chapter allow
us to finally bridge the gap between (partial applicative) morphisms of
PCAs and implicative morphisms of the associated arrow algebras.

First of all, recall by Lemma 5.12 that any morphism of PCAs DA →
DB, given two PCAs A = (A,⩽, ·,A#) and B = (B,⩽, ·,B#), is an implica-
tive morphism between the associated arrow algebras. Proposition 6.4 now
allows us to easily address the converse.

Proposition 6.34. Let f : DA → DB be an implicative morphism. Then, f is
also a morphism of PCAs DA → DB.

Therefore:

OPCA(DA,DB) = ArrAlg(DA,DB)

Proof. Indeed, f induces by postcomposition the left exact transformation
of realizability triposes Φ+

f : PDA → PDB; by Proposition 3.15, therefore, f
is a morphism of PCAs DA → DB. Recalling that the two orders coincide
as well, we conclude that OPCA(DA,DB) = ArrAlg(DA,DB).

6.4 examples 69

Moving on to partial applicative morphisms A → B, recall that they
correspond to regular transformations of triposes. The following definition
is then obvious.

Definition 6.35. Let A and B be arrow algebras. An implicative morphism
f : A → B is regular if:

f ◦ ∃g(α) ⊣⊢Y ∃g(f ◦α)

for all functions g : X→ Y and all α ∈ PA(X).
We denote with ArrAlgreg the wide subcategory of ArrAlg on regular

implicative morphisms; the 2-functor of Proposition 6.4 obviously restricts
to a 2-fully faithful 2-functor ArrAlgreg → Tripreg(Set).

Remark 6.36. Note that the inequality ∃g(fα) ⊢Y f∃g(α) holds for all
implicative morphisms f: indeed, through the adjunction ∃g ⊣ g∗ it is
equivalent to fα ⊢X f∃g(α)g, which is ensured by the properties of f since
α ⊢X ∃g(α)g by the unit of the same adjunction.

Therefore, regularity amounts to the inequality f∃g(α) ⊢Y ∃g(fα).

Remark 6.37. Computationally dense implicative morphism are regular.
Indirectly, this is obvious as inverse images of geometric morphisms of
triposes are regular; more explicitly, instead, if h : B → A is right adjoint
to f:

f∃g(α) ⊢Y ∃g(fα) ⇐⇒ ∃g(α) ⊢Y h∃g(fα)

⇐⇒ α ⊢X h∃g(fα)g

⇐⇒ fα ⊢X ∃g(fα)g

which is ensured by the unit of the adjunction ∃g ⊣ g∗.

Drawing from the previous results, we conclude that regular implicative
morphisms between arrow algebras arising from PCAs arise themselves
from partial applicative morphisms.

Proposition 6.38. The 2-functor ˜︁D of Proposition 5.14 restricts to a 2-fully
faithful 2-functor:

OPCAD ArrAlgreg

Explicitly, this means that for all PCAs A and B, ˜︁D realizes an equivalence of
preorder categories:

OPCAD(A, B) ≃ ArrAlgreg(DA,DB)

6.4 examples 70

Proof. Let f : DA → DB be a regular implicative morphism. Then, f
induces by postcomposition the regular transformation of realizability
triposes Φ+

f : PDA → PDB; by Proposition 3.18, therefore, f = ˜︁Dg for an
essentially unique partial applicative morphism g : A → B5.

Moreover, for f, f ′ : A → B partial applicative morphisms, we have
already showed that f ⩽ f ′ in OPCAD(A, B) if and only if ˜︁Df ⊢ ˜︁Df ′ in
ArrAlg(DA,DB).

Remark 6.39. Alternatively, the proof of the previous can be given by
observing that a regular implicative morphism f : DA → DB is a union-
preserving morphism of PCAs, and hence a D-algebra morphism: in fact,
DA and DB are compatible with joins, meaning that existentials can be
computed as unions.

Finally, let us specialize to the case of computational density. Recall by
Lemma 3.19 that a partial applicative morphism f : A → B is computation-
ally dense if and only if ˜︁f : DA → DB has a right adjoint in OPCA. Since
OPCA(DA,DB) coincides with ArrAlg(DA,DB), this is also equivalent
to ˜︁f : DA → DB having a right adjoint in ArrAlg, that is, to ˜︁f being com-
putationally dense as an implicative morphism DA → DB. In essence,
we have shown the following.

Proposition 6.40. The 2-functor ˜︁D of Proposition 5.14 restricts to a 2-fully
faithful 2-functor:

OPCAD,cd ArrAlgcd

Explicitly, this means that for all PCAs A and B, ˜︁D realizes an equivalence of
preorder categories:

OPCADcd(A, B) ≃ ArrAlgcd(DA,DB)

Remark 6.41. As for frames, in essence this makes so that the construction of
realizability triposes and geometric morphisms from PCAs and partial ap-
plicative morphisms factors through arrow algebras and computationally
dense implicative morphisms, giving the following diagram:

5 We can also describe g as f ◦ δ ′A.

6.4 examples 71

OPCADcd Tripgeo(Set)

ArrAlgcd

7
A R R O W A L G E B R A S F O R
M O D I F I E D R E A L I Z A B I L I T Y

In this chapter, we will apply the theoretical framework developed above
to the study of modified realizability from the point of view of arrow algebras,
recovering some functoriality results from [21] in greater generality.

The key feature of modified realizability lies in separating between a
set of potential realizers and a subset thereof of actual realizers. On the level
of triposes, this amounts to moving from the ordinary realizability tripos
PA over a (traditionally, discrete and absolute) PCA A to a tripos whose
predicates on a set I are functions from I to the set:

{ (α,β) ∈ DA×DA | α ⊆ β }

which are preordered by:

ϕ ⊢I ψ ⇐⇒
⋂︂
i∈I

(ϕ1(i) → ψ1(i))∩ (ϕ2(i) → ψ2(i)) ∈ (DA)#

where we denote with ϕ1(i),ϕ2(i) the two components of ϕ(i). This
idea is what led, in [2], to the definition of the Sierpiński construction on
arrow algebras, which we will describe below. To do this, and for what
follows, we will consider some ad hoc notions of arrow algebras which still
encompass all the relevant cases and many others. This does not mean that
we have counterexamples showing how the presented results may fail for
more general classes of arrow algebras, but only that minimal assumptions
suffice to ensure the desired properties.

Definition 7.1. An arrow algebra A = (A,≼,→,S) is binary implicative if
the equality:

a→ (b⋏ c) = a→ b⋏a→ c

holds for all a,b, c ∈ A, and it is modifiable if moreover the equality:

⊥ → a = ⊤

holds for all a ∈ A.

72

7.1 the sierpiński construction 73

We denote with ArrAlgbi and ArrAlgmod the full subcategories of ArrAlg
on binary implicative and modifiable arrow algebras, respectively.

Example 7.2. Every frame, seen as an arrow algebra in the canonical way,
is modifiable.

Example 7.3. For any PCA A, DA is modifiable; in particular, PER A is
modifiable.

7.1 the sierpiński construction

Recall by [2, Prop. 7.2] that, starting from any binary implicative arrow
algebra A = (A,≼,→,S), we can define a new arrow algebra A→ = (A→,≼
,→,S→), also binary implicative, by letting:

A→ := { x = (x0, x1) ∈ A×A | x0 ≼ x1 }

with pointwise order, implication:

x→ y := (x0 → y0⋏ x1 → y1, x1 → y1)

and separator:

S→ := { x ∈ A→ | x0 ∈ S }

Remark 7.4. This means that, for any set I, the order in PA→(I) is given by:

ϕ ⊢I ψ ⇐⇒ ⋏
i∈I
ϕ1(i) → ψ1(i)⋏ϕ2(i) → ϕ2(i) ∈ S

where we denote with ϕ1,ϕ2 : I→ A the two components of ϕ : I→ A→.

Let us now lift the association A ↦→ A→ to a (pseudo)functor on ArrAlgbi.
Let f : A → B be an implicative morphism in ArrAlgbi, for the moment

assumed to be monotone, and define:

f→ : A→ → B→ f→(x0, x1) := (f(x0), f(x1))

Lemma 7.5. f→ is an implicative morphism A→ → B→.

Proof. First, note that f→ is well-defined as a function A→ → B→ by
monotonicity of f, and it is monotone itself with respect to the evidential
orders in A→ and B→. Let us then verify that f→ satisfies the first two
conditions in Definition 5.1.

i. If x ∈ S→A , then x0 ∈ SA, so f(x0) ∈ SB and hence f→(x) ∈ S→B .

7.1 the sierpiński construction 74

ii. First note that, for all x,y ∈ A→:

f→(x→ y) = f→(x0 → y0⋏ x1 → y1, x1 → y1)

= (f(x0 → y0⋏ x1 → y1), f(x1 → y1))

whereas:

f→(x) → f→(y) = (fx0, fx1) → (fy0, fy1)

= (fx0 → fy0⋏ fx1 → fy1, fx1 → fy1)

Therefore, by binary implicativity, a realizer for f→ amounts to an
element r ∈ SB such that:

r ≼ f(x0 → y0⋏ x1 → y1) → fx0 → fy0

r ≼ f(x0 → y0⋏ x1 → y1) → fx1 → fy1

r ≼ f(x1 → y1) → fx1 → fy1

for all x,y ∈ A→, in which case (r, r) ∈ S→B realizes f→. By mono-
tonicity of f, note then that it suffices to show that:

r ≼ f(x0 → y0) → fx0 → fy0

r ≼ f(x1 → y1) → fx1 → fy1

for all x,y ∈ A→, which means that r can be taken to be a realizer
for f.

Therefore, (−)→ defines a functorial association on binary implicative
arrow algebras and monotone implicative morphisms between them. Note
moreover that, given two monotone implicative morphisms f, f ′ : A → B

in ArrAlgbi, if u ∈ SB realizes f ⊢ f ′, then (u,u) ∈ S→B clearly realizes
f→ ⊢ f ′→, meaning that (−)→ is actually 2-functorial. Precomposing with
the pseudofunctor M of Proposition 5.10, we obtain the following.

Proposition 7.6. For any implicative morphism f : A → B in ArrAlgbi, let:

f→ : A→ → B→ f→(x0, x1) :=

(︄
⋏
x0≼a

∂f(a), ⋏
x1≼a

∂f(a)

)︄
Then, (−)→ is a pseudofunctor ArrAlgbi → ArrAlgbi.
Moreover, if f is computationally dense with right adjoint h : B → A, then f→

is computationally dense as well, and a right adjoint is given by h→ : B→ → A→.

7.2 the modification of an arrow algebra 75

Proof. We only have to show the last part, so let f be computationally
dense with right adjoint h : B → A and, up to isomorphism, assume both
f and h to be monotone, so that f→ and h→ can be defined as above in the
case of monotonicity. Let’s show that h→ is right adjoint to f→.

– To show that f→h→ ⊢ idB→ , note that:

⋏
y∈B→

f→h→(y) → y ∈ S→B

⇐⇒ ⋏
y∈B→

(fh(y0), fh(y1)) → (y0,y1) ∈ S→B

⇐⇒ ⋏
y∈B→

fh(y0) → y0⋏ fh(y1) → y1 ∈ SB

which is ensured by fh ⊢ idB.

– Similarly, idA→ ⊢ h→f→ reduces to idA ⊢ hf.

Corollary 7.7. Let A and B be binary implicative arrow algebras.
Then, every geometric morphism Φ : PB → PA lifts to a geometric morphism

Φ→ : PB→ → PA→ .

Question. For A = Pow(K1), we have that AT(A→) is the effective topos
built on the topos of sheaves over the Sierpiński space, Eff·→·; that is, the
result of the construction of Eff inside the topos Set·→·.

Can we develop a theory of arrow algebras over other base toposes,
encompassing that of PCAs over other base toposes, so that the same
result holds for every (binary implicative) arrow algebra?

7.2 the modification of an arrow algebra

Let us now study the relation between PA and PA→ . First, generalizing
what is showed in [20] for discrete and absolute PCAs, we can note the
following.

Lemma 7.8. PA is a subtripos of PA→ .

Proof. Consider the projection:

π1 : A
→ → A (x0, x1) ↦→ x1

Let us show that π1, which is obviously monotone, is an implicative
morphism A→ → A.

7.2 the modification of an arrow algebra 76

i. If (x0, x1) ∈ S→, then by definition x0 ∈ S, so x1 ∈ S as well since
x0 ≼ x1.

ii. A realizer of π1 amounts to an element r ∈ S such that:

r ≼ (x1 → y1) → x1 → y1

for all x,y ∈ A→, so we can take r := i.

Consider now the diagonal map:

δ : A→ A→ a ↦→ (a,a)

Let us show that δ, also obviously monotone, is an implicative morphism
A → A→.

i. If a ∈ S, then clearly (a,a) ∈ S.

ii. We have:

⋏
a,a ′∈A

δ(a→ a ′) → δ(a) → δ(a ′) ∈ S→

⇐⇒ ⋏
a,a ′∈A

(a→ a ′,a→ a ′) → (a,a) → (a ′,a ′) ∈ S→

⇐⇒ ⋏
a,a ′∈A

(a→ a ′) → a→ a ′ ∈ S

which is ensured by i ∈ S.

Finally, let us show that δ is right adjoint to π1 in ArrAlg, making it an
implicative surjection.

– On one hand, π1δ = idA.

– On the other, we have:

idA→ ⊢A→ δπ0

⇐⇒ ⋏
x∈A→

(x0, x1) → (x1, x1) ∈ S→

⇐⇒ ⋏
x∈A→

x1 → x1 ∈ S

which is ensured by i ∈ S.

Therefore, π1 induces a geometric inclusion Φ1 : PA ↪→ PA→ .

Corollary 7.9. AT(A) is a subtopos of AT(A→).

Question. In the case of A = Pow(P) for a discrete and absolute PCA,
Johnstone [20, Lem. 3.1] showed that there is another inclusion PA ↪→ PA→ ,
induced by the projection π0 : A→ → A and disjoint from Φ1. We have

7.2 the modification of an arrow algebra 77

not been able to show that this holds in general for (binary implicative)
arrow algebras, nor to find reasonable assumptions under which this may
be the case.

At least in the modifiable case, we can say even more about the inclusion
Φ1 : PA ↪→ PA→ .

Specializing Definition 2.34 to the context of arrow algebras, recall that
a subtripos of PA is open if it is induced by a nucleus o on A of the shape:

o(a) := u→ a

for some u ∈ A, in which case the closed nucleus:

c(a) := a+ u

induces its complement in the lattice of subtriposes of PA considered up
to equivalence.

Definition 7.10. Given a modifiable arrow algebra A, we define its modifi-
cation as the arrow algebra Am := (A→)c, where c is the nucleus on A→

defined by:

c(x) := x+ (⊥,⊤)

We denote with MA the modified arrow tripos PAm , that is, the subtripos
P(A→)c of PA→ .

Proposition 7.11. Let A be a modifiable arrow algebra. Then, the inclusion
Φ1 : PA ↪→ PA→ is open, induced by the nucleus:

o(x) := (⊥,⊤) → x

In particular, MA is the closed complement of PA in the lattice of subtriposes of
PA→ considered up to equivalence.

Proof. By Remark 6.30 and the discussion preceding it, we only have to
show that o ⊣⊢ δπ1.

7.2 the modification of an arrow algebra 78

– To show that o ⊢A→ δπ1, note that:

⋏
x∈A→

o(x) → δπ1(x) ∈ S→

⇐⇒ ⋏
x∈A→

((⊥,⊤) → (x0, x1)) → (x1, x1) ∈ S→

⇐⇒ ⋏
x∈A→

(⊥ → x0⋏⊤ → x1,⊤ → x1) → (x1, x1) ∈ S→

⇐⇒ ⋏
x∈A→

(⊥ → x0⋏⊤ → x1) → x1⋏(⊤ → x1) → x1 ∈ S

⇐⇒ ⋏
x∈A→

(⊤ → x1) → x1 ∈ S

which is ensured by the properties of ∂a := ⊤ → a.

– To show that δπ1 ⊢A→ o note that, by the hypothesis of modifiability:

⋏
x∈A→

δπ1(x) → o(x) ∈ S→

⇐⇒ ⋏
x∈A→

(x1, x1) → (⊥,⊤) → (x0, x1) ∈ S→

⇐⇒ ⋏
x∈A→

(x1, x1) → (⊥ → x0⋏⊤ → x1,⊤ → x1) ∈ S→

⇐⇒ ⋏
x∈A→

(x1, x1) → (⊤ → x1,⊤ → x1) ∈ S→

⇐⇒ ⋏
x∈A→

(x1 → ⊤ → x1, x1 → ⊤ → x1) ∈ S→

⇐⇒ ⋏
x∈A→

x1 → ⊤ → x1 ∈ S

which is again ensured by the properties of ∂a := ⊤ → a.

Example 7.12. For A = Pow(K1), we reobtain what proved in [32]: the
effective topos Eff ≃ AT(A) is an open subtopos of the effective topos
built on the topos of sheaves over the Sierpiński space, Eff·→· ≃ AT(A→),
and Grayson’s modified realizability topos Mod – characterized in [2] as
AT(Am) – is its closed complement.

Example 7.13. For A = PER N, we obtain that the extensional modified
realizability topos characterized in [2] as AT(Am) is the closed complement
of AT(A) as subtoposes of AT(A→).

7.2 the modification of an arrow algebra 79

Let us now see how the construction of the modified arrow tripos can be
made (pseudo)functorial. In the proof, we will need the following property,
which makes use of the hypothesis of modifiability.

Lemma 7.14. Let f : A → B be an implicative morphism in ArrAlgmod.
Then, cf→c ⊢ f→c.1

Proof. By definition of the nucleus c ∈ N(B→), and using the fact that
logical joins are computed pointwise in (B→)A

→
, cf→c ⊢ f→c is equivalent

to:

⋏
x∈A→

(⊥,⊤) → f→c(x) ∈ S→B

Since B is modifiable, this reduces to:

⋏
x∈A→

⊤ →Mf((cx)1) ∈ S→B

where M : ArrAlg → ArrAlg is the monotonization pseudofunctor of Propo-
sition 5.10, and hence since Mf ⊣⊢ f:

⋏
x∈A→

⊤ → f(((⊥,⊤) + (x0, x1))1) ∈ S→B

Note now that, in any arrow algebra of the form A→, the logical join
a+ a ′ has a1 + a ′

1 as its second component. This can be seen using the
explicit description of logical joins given in Proposition 4.20, recalling that
(evidential) meets and implications in A→ are computed pointwise on the
second component. Therefore, the previous is equivalent to:

⋏
x∈A→

⊤ → f(⊤+ x1) ∈ SB

which follows from ⋏a⊤ → (⊤+ a) ∈ SA by the properties of f.

Theorem 7.15. For any implicative morphism f : A → B in ArrAlgmod, let
fm : Am → Bm be the composite:

Am A→ B→ Bm
c f→ idB→

where f→ : A→ → B→ is the implicative morphism defined in Proposition 7.6.
Then, (−)m is a pseudofunctor ArrAlgmod → ArrAlg.

1 Of course, the first c is a nucleus on A→, while the second one is a nucleus on B→.

7.2 the modification of an arrow algebra 80

Moreover, if f is computationally dense with right adjoint h : B → A, then fm

is computationally dense as well, and a right adjoint is given by hm : Bm → Am.
Furthermore, the square:

Bm Am

B→ A→

hm

c c

h→

commutes up to isomorphism.

Proof. First, let us show that (−)m preserves identities and compositions
up to isomorphism.

– By definition, idmA : Am → Am is given by the composite:

Am A→ A→ Am
c idA→ idA→

which means that idmA = c : Am → Am, and obviously c ⊣⊢c idA→ .

– By definition, for f : A → B and g : B → C, (gf)m is given by the
composite:

Am A→ C→ Cm
c (gf)→ idC→

where of course (gf)→ ⊣⊢ g→f→, whereas gmfm is given by the
composite:

Am A→ B→ Bm B→ C→ Cm
c f→ idB→ c g→ idC→

which means that we need to show that g→cf→c ⊣⊢c g→f→c.

On one hand, using the fact that id ⊢ c both for c ∈ N(B) and
c ∈ N(C):

g→f→c ⊢ g→cf→c ⊢ cg→cf→c

i.e. g→f→c ⊢c g→cf→c.

On the other, by the previous lemma we know that cf→c ⊢ f→c,
which implies g→cf→c ⊢ g→f→c by the properties of g→, and hence
g→cf→c ⊢ cg→f→c since idC→ ⊢ c.

The pseudofunctoriality of f ↦→ f→ then yields the pseudofunctoriality of
f ↦→ fm.

Suppose now h : B → A is right adjoint to f and, without loss of
generality, assume h to be monotone, in which case we can describe h→

7.2 the modification of an arrow algebra 81

as (y0,y1) ↦→ (h(y0),h(y1)); let us show that h→c is right adjoint to
f→c : Am → Bm.

– On one hand, f→ch→c ⊢cB→ idB→ explicitly reads as f→ch→c ⊢B→ c.
By Proposition 7.6, we know that h→ is right adjoint to f→, so the
previous is equivalent to ch→c ⊢B→ h→c, which is ensured by the
previous lemma.

– On the other, idA→ ⊢cA→ h→cf→c explicitly reads as idA→ ⊢A→

ch→cf→c. As idA→ ⊢ c, this is ensured if idA→ ⊢A→ h→cf→c. This
is again equivalent to f→ ⊢A→ cf→c as h→ is right adjoint to f→,
which follows since id ⊢ c, both for c ∈ N(A→) and c ∈ N(B→).

Finally, to show that the square above commutes up to isomorphism, we
need to show that chm ⊣⊢ h→c as morphisms Bm → A→. On one hand,
h→c ⊢ chm explicitly means h→c ⊢B→ ch→c, which follows simply being
idA→ ⊢ c. On the other, chm ⊢ h→c explicitly means ch→c ⊢B→ h→c,
which is again ensured by the previous lemma.

Corollary 7.16. Let A and B be modifiable arrow algebras. Then, every geometric
morphism Φ : PB → PA induces a geometric morphism Φm :MB →MA such
that the diagram:

MB MA

PB→ PA→

Φm

Φ→

is a pullback square of triposes and geometric morphisms.
In particular, the induced diagram of toposes and geometric morphisms:

AT(Bm) AT(Am)

AT(B→) AT(A→)

is a pullback square.

Proof. The fact that the square commutes follows directly by the previous
proposition. To show that it is a pullback, instead, recall from [21] that,
given a closed nucleus kx := x + u on A→, the pullback of the closed
subtripos PA→

k
↪→ PA→ alongΦ→ is the closed subtripos of PB→ determined

by the nucleus k ′y := y+ (Φ→)+B→(u). Therefore, the square above is a
pullback if and only if (Φ→)+B→(⊥,⊤) ⊣⊢ (⊥,⊤) in B→.

7.2 the modification of an arrow algebra 82

To prove this, let f : A → B be an implicative morphism with right
adjoint h : B → A inducing Φ, so that Φ→ is induced by f→ with right
adjoint h→ as in Proposition 7.6; then, we need to show that f→(⊥,⊤) ⊣⊢
(⊥,⊤) in B→. On one hand, by modifiability of B, (⊥,⊤) ⊢ f→(⊥,⊤)

reduces simply to ⊤ ⊢ f(⊤), which is true as f is an implicative morphism.
On the other, f→(⊥,⊤) ⊢ (⊥,⊤) is equivalent to (⊥,⊤) ⊢ h→(⊥,⊤), which
is true again as A is modifiable and h is an implicative morphism.

Remark 7.17. In particular, restricting to arrow algebras of the form Pow(P)

for a discrete and absolute PCA P, we reobtain [21, Prop. 2.1].

Remark 7.18. Recall by Proposition 6.25 that we can identify MA up to
equivalence with the subtripos M ′

A ↪→ PA→ defined by:

M ′
A(I) := {α ∈ PA→(I) | cα ⊢I α }

=

{︄
α ∈ PA→(I)

⃓⃓⃓⃓
⃓⋏
i

(⊥,⊤) → α(i) ∈ S→A

}︄

=

{︄
α ∈ PA→(I)

⃓⃓⃓⃓
⃓⋏
i

⊤ → α1(i) ∈ SA

}︄
= {α ∈ PA→(I) | ⊤I ⊢I α1 }

and in the same way we can identify MB up to equivalence with the
subtripos M ′

B ↪→ PB→ defined by:

M ′
B(I) = {β ∈ PB→(I) | ⊤I ⊢I β1 }

In these terms, Φm can be described explicitly as:

M ′
B M ′

A

f→◦−

h→◦−

⊣

that is, exactly the restriction of Φ→ in both directions.

The details of the proof of the previous corollary also reveal that a
similar result holds for open complements of modified triposes, again
generalizing what proved in [21].

7.2 the modification of an arrow algebra 83

Proposition 7.19. Let A and B be modifiable arrow algebras. Then, for every
geometric morphism Φ : PB → PA, the diagram:

PB PA

PB→ PA→

Φ

Φ→

is a pullback square of triposes and geometric morphisms.
In particular, the induced diagram of toposes and geometric morphisms:

AT(B) AT(A)

AT(B→) AT(A→)

is a pullback square.

8
A R R O W A S S E M B L I E S

We conclude this thesis with the first steps towards the introduction of a
suitable category of assemblies for arrow algebras, generalizing the notion
of assemblies for a PCA.

A notion of assemblies in the case of relative ordered partial combinatory
algebras is given by [39], where it is shown how assemblies sits inside
the corresponding realizability topos as a full subcategory whose ex/reg
completion coincides (up to equivalence) with the realizability topos itself.
Instead, our definition will follows that of [7] for implicative algebras,
which does not directly generalize Zoethout’s definition but rather the
traditional notion for the discrete and absolute case.

The category of assemblies over a PCA, in either definition, is a quasito-
pos with a natural number object which, in many relevant cases, allows us
to simplify the study of the internal logic of the corresponding realizability
topos – see, for example, the use of assemblies in [38] for the study of a
topos for modified realizability. The goal, in this sense, would be to build
a sufficiently strong theory of assemblies over an arrow algebra in order
to perform a similar reduction.

8.1 the category of arrow assemblies

Let A = (A,≼,→,S) be an arrow algebra and let P : Setop → HeytPre
be the associated arrow tripos. The following definition is given in [7] for
implicative algebras, but it works in the setting of arrow algebras as well.

Definition 8.1. We define the category ArrAsm(A) of arrow assemblies as
the category having:

– as objects, pairs (X,α) of a set X and a function α : X→ S.

84

8.1 the category of arrow assemblies 85

– as morphisms (X,α) → (Y,β), functions f : X → Y satisfying the
tracking condition α ⊢X f∗(β), i.e. explicitly:

⋏
x∈X

α(x) → β(f(x)) ∈ S

with compositions and identities defined as in Set.

Given an arrow assembly (X,α), we say that X is the carrier, and α

is the existence predicate. We denote with Γ the obvious forgetful functor
ArrAsm(A) → Set.

Example 8.2. We recover the usual definition of assemblies for a PCA in
the case of A = Pow(P).

Let us now prove that, as in the case of PCAs and implicative algebras,
ArrAsm(A) is a regular category.

Lemma 8.3. ArrAsm(A) is finitely complete.

Proof. The terminal object is clearly given by ({∗},⊤).
The product of (X,α) and (Y,β) is given by (X× Y,α⊗β), where:

α⊗β := π∗X(α)× π∗Y(β) : X× Y → S (x,y) ↦→ α(x)×β(y)

together with the two projections πX : X× Y → X and πY : X× Y → Y,
which are trivially tracked as morphisms (X× Y,α⊗ β) → (X,α) and
(X× Y,α⊗β) → (Y,β).

The equalizer of two morphisms f,g : (X,α) → (Y,β) is given by
(E, i∗(α)), where E := { x ∈ X | f(x) = g(x) } is the equalizer of f and g

in Set and i : E ↪→ X is the inclusion, which is trivially tracked as a
morphism (E,α) → (X,α).

Corollary 8.4. Γ : ArrAsm(A) → Set preserves finite limits.

Remark 8.5. By the construction of products and equalizer we can also
describe pullbacks explicitly. Indeed, the pullback of f : (X,α) → (Z,γ)
and g : (Y,β) → (Z,γ) is given by:

(P,p∗0(α)× p∗1(β)) (X,α)

(Y,β) (Z,γ)

f

g

p1

p0

where P := { (x,y) ∈ X× Y | f(x) = g(y) } is the pullback of f and g in Set
and p0 : P → X and p1 : P → Y are the two projections.

8.1 the category of arrow assemblies 86

Lemma 8.6. ArrAsm(A) is finitely cocomplete.

Proof. The initial object is clearly given by (∅, ∅).
The coproduct of (X,α) and (Y,β) is given by (X⊔ Y,α⊕β), where:

α⊕β := ∃ιX(α) + ∃ιY (β) : X⊔ Y → S

together with the two coprojections ιX : X → X ⊔ Y and ιY : Y → X ⊔ Y,
which are tracked as morphisms (X,α) → (X ⊔ Y,α⊕ β) and (Y,β) →
(X⊔ Y,α⊕β) since α ⊢X ι∗X(∃ιX(α)) and β ⊢Y ι∗Y(∃ιY (β)).

The coequalizer of two morphisms f,g : (X,α) → (Y,β) is given by
(C,∃q(β)) where C is the coequalizer of f and g in Set – that is, the
quotient of Y with respect to the smallest equivalence relation ∼ such that
f(x) ∼ g(x) for all x ∈ X – and q : Y → C is the projection onto the quotient,
together with q itself which is tracked as a morphism (Y,β) → (C,∃q(β))
since β ⊢Y q∗(∃q(β)) by the unit of the adjunction ∃q ⊣ q∗. Note in
particular how this implies that ∃q(β) is well-defined as an existence
predicate: in fact, by surjectivity of q, any c ∈ C is given by q(y) for some
y ∈ Y, from which β(y) → ∃q(β)(q(y)) ∈ S and hence ∃q(β)(c) ∈ S as
β(y) ∈ S.

Corollary 8.7. Γ : ArrAsm(A) → Set preserves finite colimits.

Remark 8.8. As Γ is obviously faithful, it reflects monomorphisms and
epimorphisms; since it preserves finite limits and colimits, Γ also preserves
monomorphisms and epimorphisms.

Therefore, a morphism of assemblies f : (X,α) → (Y,β) is a monomor-
phism (resp. epimorphism) if and only if f : X → Y is injective (resp.
surjective).

To show regularity, we will refer to the definition of a regular category
given in [19, A1.3].

Definition 8.9. A morphism p : X→ Y in a category C is a cover if, for any
factorization:

X Y

Z

p

m

where m is monic, m is actually an isomorphism.

8.1 the category of arrow assemblies 87

Assuming C admits finite limits, the notion of cover is equivalent to that
of strong epimorphism (and extremal epimorphism). In particular, covers
in C are epic, and the image factorization of a morphism – by definition,
the least subobject of the codomain it factors through – is given by a cover
followed by a monomorphism.

In this context, C is regular if:

i. it is finitely complete;

ii. every morphism admits an image factorization;

iii. covers are stable under pullback,

in which case covers coincide with regular epimorphisms as well.

The following lemma characterizes covers in ArrAsm(A).

Lemma 8.10. Let f : (X,α) → (Y,β) be a morphism of assemblies. Then, f is a
cover if and only if f is surjective and β ⊣⊢Y ∃f(α).

Proof. Suppose f is a cover. Then, f is surjective as ArrAsm(A) is finitely
complete, and ∃f(α) ⊢Y β follows from α ⊢Y f∗(β) by the adjunction
∃f ⊣ f∗. To show that β ⊢Y ∃f(α), consider then the factorization:

(X,α) (Y,β)

(Y,∃f(α))

f

idYf

where f is tracked as a morphism (X,α) → (Y,∃f(α)) since α ⊢X f∗(∃f(α))
by the unit of the adjunction ∃f ⊣ f∗. As idY is a monomorphism since it
is injective, it is hence an isomorphism: this means that idY is tracked as a
morphism (Y,β) → (Y, ∃f(α)), from which β ⊢Y ∃f(α).

Conversely, suppose f is surjective and β ⊣⊢Y ∃f(α) and consider any
factorization:

(X,α) (Y,β)

(Z,γ)

f

mg

where m is monic. Then, since f is surjective and m is injective, it follows
that m must be bijective; let’s then show that m -1 : Y → Z is tracked
as a morphism (Y,β) → (Z,γ), hence making m is an isomorphism in
ArrAsm(A). Explicitly, this amounts to:

β ⊢Y γm -1

8.1 the category of arrow assemblies 88

Since β ⊢Y ∃f(α), it suffices to show:

∃f(α) ⊢Y γm -1

which, by the adjunction ∃f ⊣ f∗, is equivalent to:

α ⊢X γm -1f = γg

and this holds as g is a morphism (X,α) → (Z,γ).

Note that, if β ⊣⊢Y β ′, then idY is an isomorphism (Y,β) ≃ (Y,β ′) in
ArrAsm(A). By the previous lemma, therefore, any cover f : (X,α) → (Y,β)
can be identified up to isomorphism with f : (X,α) → (Y, ∃f(α)).

Corollary 8.11. Every morphism in ArrAsm(A) admits an image factorization.

Proof. Let f : (X,α) → (Y,β) be any morphism in ArrAsm(A) and let f =
i ◦ ˜︁f be the image factorization of f in Set. Then, note that ˜︁f is tracked as a
morphism (X,α) → (f(X),∃f(α)) since α ⊢X ˜︁f∗(∃f(α)) = f∗(∃f(α)) follows
by the unit of the adjunction ∃f ⊣ f∗. Instead, the inclusion i is tracked as a
morphism (f(X), ∃f(α)) → (Y,β) simply because ∃f(α) ⊢f(X) β is implied
by ∃f(α) ⊢Y β which is equivalent to α ⊢X f∗(β). Therefore, we have the
following factorization in ArrAsm(A):

(X,α) (Y,β)

(f(X), ∃f(α))

f

i˜︁f
By the previous lemma, f : (X,α) → (f(X),∃f(α)) is a cover, whereas

i : (f(X),∃f(α)) → (Y,β) is obviously a monomorphism being injective.
Therefore, i ◦ ˜︁f is the image factorization of f.

Proposition 8.12. Covers in ArrAsm(A) are stable under pullback.

Proof. Let f be a cover in ArrAsm(A), which by the previous remarks we
can assume of the form f : (X,α) → (Y,∃f(α)) for a surjective f. Consider
the pullback of f along some morphism g : (Z,γ) → (Y, ∃f(α)):

(P,p∗0(α)× p∗1(γ)) (X,α)

(Z,γ) (Y,∃f(α))

f

g

p1

p0

8.1 the category of arrow assemblies 89

To show that p1 is a cover, as it is obviously surjective, we only need to
show that γ ⊢Z ∃p1(p∗0(α)× p∗1(γ)). By the Frobenius condition, this is
equivalent to γ ⊢Z ∃p1(p∗0(α))× γ, i.e. to γ ⊢Z ∃p1(p∗0(α)). By the Beck-
Chevalley condition, this is then equivalent to γ ⊢Z g∗(∃f(α)), which is
true as g is tracked as a morphism (Z,γ) → (Y,∃f(α)).

Corollary 8.13. ArrAsm(A) is a regular category.

Corollary 8.14. Γ : ArrAsm(A) → Set preserves regular epimorphisms; hence, it
is a regular functor.

One of the key properties in reducing the logic of a realizability topos
to that of the category of assemblies over the underlying PCA is that their
category is endowed with a natural number object. This is still true in the
case of arrow assemblies: the following construction was given by Marcus
Briët in his Master thesis [6].

Proposition 8.15. ArrAsm(A) admits a natural number object.

Proof. First, for f, x ∈ A, we define fnx inductively for n ∈ N by letting:⎧⎨⎩f0x := xfn+1x := f(fnx)

Consider now the assembly (N,ν) where:

ν(n) := ⋏
f∈A

f→ ⋏
x∈A

x→ ∂fnx

which is well-defined as an existence predicate since, for every n ∈ N:

(λfx.fnx)A = ⋏
f∈A

f→ ∂⋏
x∈A

x→ ∂fnx ∈ S

and hence ν(n) ∈ S by the properties of ∂. Then, consider 0 ∈ N as a
function {∗} → N, which is trivially tracked as a morphism ({∗},⊤) →
(N,ν) since ν(0) ∈ S. Finally, let s : N → N be the successor function, and
note that:

(λnfx.η ′(i ′f)(nfx))A ≼ ⋏
n∈N

ν(n) → ∂⋏
f∈A

f→ ∂⋏
x∈A

x→ ∂η ′(∂f)(∂fnx)

≼ ⋏
n∈N

ν(n) → ∂⋏
f∈A

f→ ∂⋏
x∈A

x→ ∂∂fn+1x ∈ S

8.1 the category of arrow assemblies 90

from which ⋏n∈N ν(n) → ν(n+ 1) ∈ S by the properties of ∂, meaning
that s is tracked as a morphism (N,ν) → (N,ν).

Let’s show that ⟨(N,ν), 0, s⟩ is a natural number object in ArrAsm(A).
Consider a diagram:

({∗},⊤) (X,α) (X,α)
x0 f

in ArrAsm(A). Then, there exists a unique function ϕ : N → X which
makes the diagram:

N N

{∗}

X X

s

ϕ ϕ

0

x0

f

commute in Set; to conclude, it therefore suffices to show that ϕ is tracked
as a morphism (N,ν) → (X,α). To prove this, first let:

f := ⋏
x∈X

(∂α(x)) → ∂α(f(x))

and note that, being α ⊢X αf, f ∈ S by the properties of ∂. Inductively, we
have that fn(∂α(x0)) ≼ ∂α(fn(x0)) for all n ∈ N:

f
0
(∂α(x0)) ≼ ∂α(f

0(x0))

f
n+1

(∂α(x0)) =

(︄
⋏
x∈X

(∂α(x)) → ∂α(f(x))

)︄
(f
n
(∂α(x0)))

≼

(︄
⋏
x∈X

(∂α(x)) → ∂α(f(x))

)︄
(∂α(fn(x0)))

≼ ∂α(fn+1(x0))

Therefore, we have:

(λn.nf(∂α(x0)))A ≼ ⋏
n∈N

ν(n) → ∂

(︄
⋏
f∈A

f→ ⋏
x∈A

x→ ∂fnx

)︄
f(∂α(x0))

≼ ⋏
n∈N

ν(n) → ∂∂f
n
(∂α(x0))

≼ ⋏
n∈N

ν(n) → ∂∂∂α(fn(x0))

= ⋏
n∈N

ν(n) → ∂∂∂α(ϕ(n)) ∈ S

from which ν ⊢N αϕ by the properties of ∂.

8.2 from arrow assemblies to the arrow topos 91

Remark 8.16. As a matter of fact, ArrAsm(A) is even a quasi-topos, that is,
it is also locally cartesian closed and it admits a strong subobject classifier.
The proof carries over to arrow algebras essentially unchanged from that
in [7].

8.2 from arrow assemblies to the arrow topos

Let A = (A,≼,→,S) be an arrow algebra, let P : Setop → HeytPre be the
associated arrow tripos and let AT(A) be the corresponding arrow topos.

By definition, an object of AT(A) is a set X endowed with a partial
equivalence relation ∼X∈ P(X× X), so that the statement x ∼X x can be
interpreted as expressing that x exists. Instead, an assembly over A consists
of a set X endowed with an S-valued predicate α : X→ S such that α(x)
can be thought of as a witness for the fact that x exists. Following this
intuition, it seems natural to try to embed ArrAsm(A) into AT(A).

Notation. Following [34], given any ϕ ∈ P(X), we denote with ∼ϕ the
predicate ∃δX(ϕ) ∈ P(X × X), where δX : X → X × X is the diagonal
function ⟨idX, idX⟩. Recall then that a predicate of the form ∼ϕ satisfies:

i. P ⊨ ∀x(x ∼ϕ x↔ ϕ(x));

ii. P ⊨ ∀x, x ′(x ∼ϕ x ′ → x ′ ∼ϕ x);

iii. P ⊨ ∀x, x ′, x ′′(x ∼ϕ x ′ ∧ x ′ ∼ϕ x ′′ → x ∼ϕ x
′′).

For an assembly (X,α), let then ι(X,α) := (X, ∼α). By the previous
remark, ∼α is symmetric and transitive, hence (X, ∼α) is an arrow set.

Let now f : (X,α) → (Y,β) be a morphism of assemblies. We define ι(f)
as the morphism (X, ∼α) → (Y, ∼β) in AT(A) represented by:

F := ∃⟨idX,f⟩(α) ∈ P(X× Y)

First, let us show that F is a functional relation from (X, ∼α) to (Y, ∼β).
To keep the proof reasonably short, we will make uncommented use of
the property P ⊨ ∀x(x ∼ϕ x ↔ ϕ(x)) of predicates of the form ∼ϕ for
ϕ ∈ P(X), the Heyting adjunction in each P(I), and the adjunction ∃f ⊣ f∗

for any function f – together with the fact that f∗ is a morphism of Heyting
prealgebras.

Lemma 8.17. F is strict.

8.2 from arrow assemblies to the arrow topos 92

Proof. P ⊨ ∀x,y(F(x,y) → x ∼X x∧ y ∼Y y) amounts to:

∃⟨idX,f⟩(α) ⊢X×Y π∗1(α)× π∗2(β)

where π1 and π2 are the projections from X× Y. Then:

∃⟨idX,f⟩(α) ⊢X×Y π∗1(α)× π∗2(β)

⇐⇒ α ⊢X α× f∗(β)

⇐⇒ α ⊢X f∗(β)

which is true as f is a morphism of assemblies (X,α) → (Y,β).

Lemma 8.18. F is relational.

Proof. P ⊨ ∀x, x ′,y,y ′(F(x,y)∧ x ∼α x ′ ∧ y ∼β y
′ → F(x ′,y ′)) amounts to:

π∗13(∃⟨idX,f⟩(α))× π∗12(∃δX(α))× π
∗
34(∃δY (β)) ⊢X×X×Y×Y π

∗
24(∃⟨idX,f⟩(α))

where π12,π13,π24,π34 are projections from X× X× Y × Y. Then, since
α ⊢X f∗(β):

π∗13(∃⟨idX,f⟩(α))× π∗12(∃δX(α))× π
∗
34(∃δY (β)) ⊢X×X×Y×Y π

∗
24(∃⟨idX,f⟩(α))

⇐⇒ π∗13(∃⟨idX,f⟩(α)) ⊢X×X×Y×Y
π∗12(∃δX(α)) → π∗34(∃δY (β)) → π∗24(∃⟨idX,f⟩(α))

⇐= π∗13(∃⟨idX,f⟩(f
∗(β))) ⊢X×X×Y×Y

π∗12(∃δX(α)) → π∗34(∃δY (β)) → π∗24(∃⟨idX,f⟩(α))

⇐⇒ ∃⟨π1,π2,fπ1,π3⟩((fπ1)
∗(β)) ⊢X×X×Y×Y

π∗12(∃δX(α)) → π∗34(∃δY (β)) → π∗24(∃⟨idX,f⟩(α))

⇐⇒ (fπ1)
∗(β) ⊢X×X×Y

⟨π1,π2⟩∗(∃δX(α))→⟨fπ1,π3⟩∗(∃δY (β))→⟨π2,π3⟩∗(∃⟨idX,f⟩(α))

⇐⇒ ⟨fπ1,π3⟩∗ (∃δY (β)) ⊢X×X×Y
(fπ1)

∗(β) → ⟨π1,π2⟩∗ (∃δX(α)) → ⟨π2,π3⟩∗ (∃⟨idX,f⟩(α))

⇐⇒ ∃⟨π1,π2,fπ1⟩((fπ1)
∗(β)) ⊢X×X×Y

(fπ1)
∗(β) → ⟨π1,π2⟩∗ (∃δX(α)) → ⟨π2,π3⟩∗ (∃⟨idX,f⟩(α))

⇐⇒ (fπ1)
∗(β) ⊢X×X (fπ1)

∗(β) → ∃δX(α) → ⟨π2, fπ1⟩∗ (∃⟨idX,f⟩(α))

⇐⇒ ∃δX(α) ⊢X×X (fπ1)
∗(β) → ⟨π2, fπ1⟩∗ (∃⟨idX,f⟩(α))

⇐⇒ α ⊢X f∗(β) → ⟨idX, f⟩∗ (∃⟨idX,f⟩(α))

⇐⇒ α ⊢X ⟨idX, f⟩∗ (∃⟨idX,f⟩(α))

8.2 from arrow assemblies to the arrow topos 93

which is ensured by the unit of the adjunction ∃⟨idX,f⟩ ⊣ ⟨idX, f⟩∗. In
particular, we have also made use of the Beck-Chevalley condition applied
to the pullback squares:

X X× Y

Y Y × Y

⟨idX,f⟩

f×idYf

δY

⌟

X×X X×X× Y

Y Y × Y

fπ1

δY

⌟

⟨π1,π2,fπ1⟩

⟨fπ1,π3⟩

X×X× Y X×X× Y × Y

X× Y

Y Y × Y

fπ1

δY

⟨π1π2,fπ1,π3⟩

π13

f×idY

⌟

Lemma 8.19. F is single-valued.

Proof. P ⊨ ∀x,y,y ′(F(x,y)∧ F(x,y ′) → y ∼β y
′) amounts to:

π∗12(∃⟨idX,f⟩(α))× π∗13(∃⟨idX,f⟩(α)) ⊢X×Y×Y π∗23 (∃δ(β))

where π12,π13 and π23 are projections from X× Y × Y. Then, since α ⊢X
f∗(β):

π∗12(∃⟨idX,f⟩(α))× π∗13(∃⟨idX,f⟩(α)) ⊢X×Y×Y π∗23 (∃δY (β))

⇐⇒ π∗12(∃⟨idX,f⟩(α)) ⊢X×Y×Y π∗13(∃⟨idX,f⟩(α)) → π∗23 (∃δY (β))

⇐= π∗12(∃⟨idX,f⟩(f
∗(β))) ⊢X×Y×Y π∗13(∃⟨idX,f⟩(α)) → π∗23 (∃δY (β))

⇐⇒ π∗12(f× idY)∗(∃δY (β)) ⊢X×Y×Y π
∗
13(∃⟨idX,f⟩(α)) → π∗23 (∃δY (β))

⇐⇒ ∃⟨π1,fπ2,π2⟩((fπ1)
∗(β)) ⊢X×Y×Y π∗13(∃⟨idX,f⟩(α)) → π∗23 (∃δY (β))

⇐⇒ (fπ1)
∗(β) ⊢X×Y ∃⟨idX,f⟩(α) → (f× idY)∗ (∃δY (β))

⇐⇒ ∃⟨idX,f⟩(α) ⊢X×Y (fπ1)
∗(β) → (f× idY)∗ (∃δY (β))

⇐⇒ α ⊢X f∗(β) → ⟨f, f⟩∗ (∃δY (β))

⇐⇒ α ⊢X ⟨f, f⟩∗ (∃δY (β))

⇐⇒ α ⊢X f∗δ∗Y (∃δY (β))

⇐= f∗(β) ⊢X f∗δ∗Y (∃δY (β))

⇐= β ⊢Y δ∗Y (∃δY (β))

8.2 from arrow assemblies to the arrow topos 94

which is ensured by the unit of the adjunction ∃δY ⊣ δ∗Y . In particular,
we have also made use of the Beck-Chevalley condition applied to the
pullback squares:

X X× Y

Y Y × Y

⟨idX,f⟩

f×idYf

δY

⌟

X× Y X× Y × Y

X× Y

Y Y × Y

fπ1

δY

⟨π1,fπ2,π2⟩

π12

f×idY

⌟

Lemma 8.20. F is total.

Proof. P ⊨ ∀x(x ∼α x→ ∃yF(x,y)) amounts to:

α ⊢X ∃πX∃⟨idX,f⟩(α)

which holds trivially since ∃πX∃⟨idX,f⟩(α) ⊣⊢X ∃idX(α) ⊣⊢X α.

Let us now show that the association (X,α) ↦→ (X, ∼α) is functorial.

Proposition 8.21. ι is a functor ArrAsm(A) → AT(A).

Proof. Let (X,α) be an assembly. The correspondent identity morphism
in ArrAsm(A) is given by idX, and ι(idX) is represented by ∃⟨idX,idX⟩(α) =

∃δX(α) = ∼α which also represents the identity at (X, ∼α) in AT(A).
Consider now f : (X,α) → (Y,β) and g : (Y,β) → (Z,γ) in ArrAsm(A).

Then, ι(gf) is represented by ∃⟨idX,gf⟩(α) while ι(g) ◦ ι(f) is represented
by:

∃π13(π
∗
12(∃⟨id,f⟩(α))× π∗23(∃⟨id,g⟩(β)))

To show that they define the same morphism in AT(A) we need to show
that they are isomorphic in P(X× Z); recall moreover that, as they are

8.2 from arrow assemblies to the arrow topos 95

functional relations from (X, ∼α) to (Z, ∼γ), it suffices to show only one
inequality. Then, since α ⊢X f∗(β):

∃π13(π
∗
12(∃⟨idX,f⟩(α))× π∗23(∃⟨idY ,g⟩(β))) ⊢X×Z ∃⟨idX,gf⟩(α)

⇐⇒ π∗12(∃⟨idX,f⟩(α))× π∗23(∃⟨idY ,g⟩(β)) ⊢X×Y×Z π∗13(∃⟨idX,gf⟩(α))

⇐⇒ π∗12(∃⟨idX,f⟩(α)) ⊢X×Y×Z π∗23(∃⟨idY ,g⟩(β)) → π∗13(∃⟨idX,gf⟩(α))

⇐⇒ ∃⟨π1,fπ1,π2⟩(π
∗
1(α)) ⊢X×Y×Z π∗23(∃⟨idY ,g⟩(β)) → π∗13(∃⟨idX,gf⟩(α))

⇐⇒ π∗1(α) ⊢X×Z ⟨fπ1,π2⟩∗ (∃⟨idY ,g⟩(β)) → ∃⟨idX,gf⟩(α)

⇐⇒ ⟨fπ1,π2⟩∗ (∃⟨idY ,g⟩(β)) ⊢X×Z π∗1(α) → ∃⟨idX,gf⟩(α)

⇐⇒ ∃⟨idX,gf⟩(f
∗(β)) ⊢X×Z π∗1(α) → ∃⟨idX,gf⟩(α)

⇐⇒ f∗(β) ⊢X α→ ⟨idX,gf⟩∗ ∃⟨idX,gf⟩(α)

⇐⇒ α ⊢X ⟨idX,gf⟩∗ ∃⟨idX,gf⟩(α)

which is ensured by the unit of the adjunction ∃⟨idX,gf⟩ ⊣ ⟨idX,gf⟩∗. In
particular, we have also made use of the Beck-Chevalley condition applied
to the pullback squares:

X× Y X× Y × Y

X X× Y

⟨π1,fπ1,π2⟩

π1

⌟
π12

⟨idX,f⟩

X X×Z

Y Y ×Z

⟨idX,gf⟩

f

⌟

⟨fπ1,π2⟩

⟨idY ,g⟩

Remark 8.22. In the proofs of this section, we have not really made use of
any specific property of arrow algebras, nor of the fact that existence pred-
icates take value in the separator. Indeed, the previous discussion holds
for arbitrary (canonically presented) triposes and considering arbitrary
predicates α ∈ P(X) instead of existence predicates α : X→ S.

Question. The functor ι is fully faithful in the case of arrow algebras of
the form Pow(P) for a discrete and absolute PCA P. Which conditions on
an arbitrary arrow algebra suffice to recover the same result?

8.3 constant objects 96

8.3 constant objects

As it happens for PCAs and implicative algebras, the forgetful functor
Γ : ArrAsm(A) → Set has a right adjoint ∇ : Set → ArrAsm(A), the constant
object functor:

– for a set X, we let ∇(X) := (X,⊤X), where ⊤X is the constant function
on X of value ⊤;

– for a function f : X→ Y, we let ∇(f) := f, which is trivially tracked
as a morphism (X,⊤X) → (Y,⊤Y).

Lemma 8.23. Γ ⊣ ∇, and Γ∇ = idSet. In particular, ∇ is full and faithful.

Proof. Indeed, ArrAsm(A)((X,α),∇Y) = Set(X, Y).

Proposition 8.24. ∇ : Set → ArrAsm(A) is a regular functor.

Proof. First, let us show that ∇ preserves finite limits.

i. Of course ∇{∗} = ({∗},⊤) is the terminal object in ArrAsm(A).

ii. For all sets X and Y, we have:

∇(X× Y) = (X× Y,⊤X×Y)

≃ (X× Y,⊤X ⊗⊤Y)

≃ (X,⊤X)× (Y,⊤Y)

so ∇ preserves binary products.

iii. Given the equalizer e : E → X of two functions f,g : X → Y,
∇(e) = e : (E,⊤E) → (X,⊤X) is obviously the equalizer of ∇(f),∇(g) :

(X,⊤X) → (Y,⊤Y).

Let now f : X→ Y be a regular epimorphism in Set, that is, a surjective
function. Then, ∇f = f : (X,⊤X) → (Y,⊤Y) is obviously surjective; by the
previous characterization of regular epimorphisms in ArrAsm(A) we then
have to show that ⊤Y ⊢Y ∃f(⊤X). Explicitly, this means:

⋏
y∈Y

⊤ → ⋏
a∈A

⎛⎝ ⋏
x∈f -1(y)

⊤ → ∂a

⎞⎠→ ∂∂a ∈ S

i.e.:

⊤ → ⋏
a∈A

(⊤ → ∂a) → ∂∂a ∈ S

which is clearly true.

8.4 functors between categories of assemblies 97

Remark 8.25. The composition ι∇ : Set → AT(A) is the constant object
functor for the topos AT(A) as described in Chapter 2.

Question. Is ArrAsm(A) equivalent to the full subcategory of AT(A) on
subobjects of constant objects, so that AT(A) is the ex/reg completion of
ArrAsm(A)?

8.4 functors between categories of assemblies

As in [34] and [39], we now briefly discuss functors between categories
of arrow assemblies induced by implicative morphisms. Let f : A → B be
an implicative morphism.

We define a functor ArrAsm(f) : ArrAsm(A) → ArrAsm(B) as follows:

– for an assembly (X,α) over A, we let ArrAsm(f)(X,α) := (X, fα),
which is well-defined since f(SA) ⊆ SB;

– for a morphism of assemblies g : (X,α) → (Y,β) over A, we let
ArrAsm(f)(g) := g, which is tracked as a morphism (X, fα) → (Y, fβ)
since α ⊢X βg implies fα ⊢X fβg.

Lemma 8.26. ArrAsm(f) is a left exact functor ArrAsm(A) → ArrAsm(B).

Proof. ArrAsm(f) obviously preserves the terminal object as f(⊤) ⊣⊢ ⊤.
Let (X,α) and (Y,β) be assemblies over A and consider their product

(X× Y,α⊗ β), which ArrAsm(f) maps to (X× Y, f(α⊗ β)). To show that
ArrAsm(f) preserves products, we then need to show that f(α⊗β) ⊣⊢X×Y
fα⊗ fβ; explicitly, this means:

⋏
x∈X

⋏
y∈Y

f(α(x)×β(y)) → fα(x)× fβ(y) ∈ S

⋏
x∈X

⋏
y∈Y

fα(x)× fβ(y) → f(α(x)×β(y)) ∈ S

which follow by the properties of implicative morphisms.
Let e : (E,αe) → (X,α) be the equalizer of two morphisms g,g ′ :

(X,α) → (Y,β), which ArrAsm(f) maps to i : (E, fαe) → (X, fα). Trivially,
this is again the equalizer of g,g ′ : (X, fα) → (Y, fβ).

Remark 8.27. Clearly ΓB ◦ ArrAsm(f) = ΓA: a functor F : ArrAsm(A) →
ArrAsm(B) such that ΓB ◦ F ≃ ΓA is called a Γ -functor.

8.4 functors between categories of assemblies 98

Similarly, ArrAsm(f)◦∇A ≃ ∇B since f⊤X ⊣⊢ ⊤Y : a functor F : ArrAsm(A) →
ArrAsm(B) such that F ◦∇A ≃ ∇B is called a ∇-functor.

We can also extend ArrAsm to a 2-functor on ArrAlg. Given f,g : A → B

such that f ⊢ g, in fact, we can define a natural transformation ξ :=

ArrAsm(f ⊢ g) : ArrAsm(f) ⇒ ArrAsm(g) by letting, for each assembly (X,α)
on A:

ξ(X,α) := idX

which is tracked as a morphism (X, fα) → (X,gα) since, if f ⊢ g, then
fα ⊢X gα. Recall by [34, Proposition 1.6.1] that natural transformations
between Γ -functors are uniquely determined if they exist, so that ξ above
is the unique ArrAsm(f) ⇒ ArrAsm(g).

Proposition 8.28. If f : A → B is a regular implicative morphism, then
ArrAsm(f) : ArrAsm(A) → ArrAsm(B) is a regular functor.

Proof. As we’ve seen, ArrAsm(f) is always left exact, and therefore it is
regular if and only if it preserves regular epimorphisms. Recall then that
regular epimorphisms in ArrAsm(A) can be characterized as surjective
morphisms g : (X,α) → (Y,∃g(α)), which ArrAsm(f) maps to g : (X, fα) →
(Y, f∃g(α)), obviously surjective.

Therefore, if f is regular, then f∃g(α) ⊣⊢Y ∃g(fα), which means that
ArrAsm(f)(g) = g : (X, fα) → (Y, f∃g(α)) ≃ (Y, ∃g(fα)) is a regular epimor-
phism in ArrAsm(B) as well.

C O N C L U S I O N

In this thesis, we have lifted the theory of arrow algebras to a categorical
framework for the study of toposes arising from triposes in a simple and
concrete way. This has been achieved by introducing various notions of
morphisms between arrow algebras and studying how they correspond
to transformations of the associated arrow triposes. By specializing these
correspondences to the case of geometric inclusions, we have character-
ized subtoposes of arrow toposes completely in terms of nuclei on arrow
algebras, in a generalization of the corresponding locale-theoretic notion,
hence giving a positive answer to a conjecture of [2]. To further demon-
strate the stability of the theory, we have studied modified realizability
from the abstract point of view offered by arrow algebras, introducing
a pseudofunctorial construction which greatly extends previous results
known in the literature. Finally, we have defined a generalization of the
traditional notion of assemblies over a PCA in the context of arrow alge-
bras, possibly setting the ground for a systematic study of arrow toposes
as ex/reg completions.

Clearly, a lot of aspects of the theory of arrow algebras and arrow
toposes are still to be explored; we name here a few possible directions for
research.

1. As already noted in [2], it is still unclear how exactly arrow algebras
relate to other structures inducing triposes and hence toposes: par-
ticularly, basic combinatory objects of [14] and evidenced frames of
[8], which also admit a notion of morphisms to compare with that of
implicative morphisms.

2. In [29], Miquel showed how implicative triposes are complete with
respect to Set-triposes, that is, every tripos over Set is isomorphic
to an implicative tripos. Of course, this result immediately extends
to arrow triposes, but it crucially requires the Axiom of Choice and
therefore it may not generalize to other base toposes. It would be
worth to analyze his construction from the point of view of arrow

99

conclusion 100

algebras to see if there is a way to recover the same completeness
result for arrow triposes in a constructive way, by defining some
‘canonical’ arrow algebra inducing a given tripos.

In parallel, a possible theory of arrow algebras over more general
base toposes could be developed: to this aim, in this thesis, we have
chosen to stick to a constructive metatheory.

3. In this thesis, we have focused on the theoretical framework for
studying geometric morphisms of localic and realizability toposes
from a more concrete perspective: the next step would rationally be
to set this machinery in motion, possibly shedding new light on the
interrelations between localic and realizability toposes.

Coherently, it would be worth investigating if other notions of mor-
phisms between toposes admit simple characterizations at the level of
arrow algebras: for example, localic, hyperconnected, local and bounded
geometric morphisms, but also logical functors which don’t immedi-
ately fit with the theory of implicative morphisms.

On another hand, the notion of gluing of toposes along a left exact
functor can be recovered at the level of triposes and left exact trans-
formations: can we also give a corresponding construction at the
level of arrow algebras and implicative morphisms?

4. Finally, the biggest open question concerns the category of assem-
blies, which as of now does not possess most of the nice properties it
has in the case of assemblies over a discrete and absolute PCA: first
of all, being a full subcategory of the arrow topos, but also being
(equivalent to) the subcategory of ¬¬-separated objects, or having
the arrow topos as its ex/reg completion.

As already mentioned, our definition does not generalize Zoethout’s
definition of [39], which instead lifts all the desirable properties to the
relative ordered case; this suggests that it may not be the ‘correct’ one.
A possible redefinition, which does generalize Zoethout’s, would
be to let assemblies over an arrow algebra be pairs (X,α) where α
is a function X→ A \ {⊥}, while morphisms are still required to be
tracked by an element of the separator; however, such a definition
would clearly not be ideal in a constructive metatheory. We leave the
question open for future research.

B I B L I O G R A P H Y

[1] A. Bauer, Five stages of accepting constructive mathematics, Bulletin of
the American Mathematical Society, vol. 54, no. 3, pp. 481–498, 2016.

[2] B. van den Berg and M. Briet, Arrow algebras, 2023. arXiv: 2308.14096
[math.CT].

[3] L. Birkedal and J. van Oosten, Relative and modified relative realizability,
Annals of Pure and Applied Logic, vol. 118, no. 1, pp. 115–132, 2002.

[4] I. Blechschmidt, Exploring mathematical objects from custom-tailored
mathematical universes, in Objects, Structures, and Logics: FilMat Studies
in the Philosophy of Mathematics, G. Oliveri, C. Ternullo, and S. Boscolo,
Eds. Springer, 2022, pp. 63–95.

[5] F. Borceux, Handbook of Categorical Algebra. Cambridge University
Press, 1994.

[6] M. Briët, The arrow algebra, a more general structure to obtain realizability
toposes, M.S. thesis, University of Amsterdam, 2023.

[7] F. Castro, A. Miquel, and K. Worytkiewicz, Implicative assemblies,
2023. arXiv: 2304.10429 [math.AT].

[8] L. Cohen, É. Miquey, and R. Tate, Evidenced frames: A unifying frame-
work broadening realizability models, in Proceedings of the 36th Annual
ACM/IEEE Symposium on Logic in Computer Science, 2021, pp. 1–13.

[9] S. Feferman, J. N. Crossley, M. Boffa, D. van Dalen, and K. McAloon,
A language and axioms for explicit mathematics, Journal of Symbolic
Logic, vol. 49, no. 1, pp. 308–311, 1984.

[10] M. P. Fourman and D. S. Scott, Sheaves and logic, in Applications of
Sheaves. Lecture Notes in Mathematics, M. Fourman, C. Mulvey, and
D. Scott, Eds. Springer, 1979, pp. 302–401.

[11] R. Grayson, Modified realizability toposes, handwritten notes from
Münster University, 1981.

[12] D. Higgs, A category approach to boolean-valued set theory, 1973.

101

https://arxiv.org/abs/2308.14096
https://arxiv.org/abs/2308.14096
https://arxiv.org/abs/2304.10429

bibliography 102

[13] ——, Injectivity in the topos of complete heyting algebra valued sets,
Canadian Journal of Mathematics, vol. 36, no. 3, pp. 550–568, 1984.

[14] P. Hofstra, All realizability is relative, Mathematical Proceedings of
the Cambridge Philosophical Society, no. 2, pp. 239–264, 2006.

[15] P. Hofstra and J. van Oosten, Ordered partial combinatory algebras,
Mathematical Proceedings of the Cambridge Philosophical Society,
vol. 134, 2003.

[16] J. M. E. Hyland, The effective topos, in The L. E. J. Brouwer Centenary
Symposium, ser. Studies in Logic and the Foundations of Mathematics,
A. Troelstra and D. van Dalen, Eds., vol. 110, Elsevier, 1982, pp. 165–
216.

[17] J. M. E. Hyland, P. T. Johnstone, and A. M. Pitts, Tripos theory, Mathe-
matical Proceedings of the Cambridge Philosophical Society, vol. 88,
no. 2, pp. 205–232, 1980.

[18] N. Johnson and D. Yau, 2-Dimensional Categories. Oxford University
Press, 2020.

[19] P. T. Johnstone, Sketches of an Elephant: a Topos Theory Compendium
(Oxford logic guides). Oxford University Press, 2002.

[20] ——, The gleason cover of a realizability topos, Theory and Applications
of Categories, vol. 28, no. 32, pp. 1139–1152, 2013.

[21] ——, Functoriality of modified realizability, Tbilisi Mathematical Jour-
nal, vol. 10, pp. 209–222, 2017.

[22] S. C. Kleene, On the interpretation of intuitionistic number theory, Jour-
nal of Symbolic Logic, vol. 10, no. 4, pp. 109–124, 1945.

[23] ——, The Foundations of Intuitionistic Mathematics. North-Holland
Pub. Co., 1965.

[24] G. Kreisel, Interpretation of analysis by means of constructive functionals
of finite types, in Constructivity in mathematics, A. Heyting, Ed., North-
Holland Pub. Co., 1959, pp. 101–128.

[25] J. Longley, Realizability toposes and language semantics, Ph.D. disser-
tation, University of Edinburgh, 1994. [Online]. Available: http:
//hdl.handle.net/1842/402.

[26] S. Mac Lane and I. Moerdijk, Sheaves In Geometry And Logic (Univer-
sitext). Springer, 1992.

http://hdl.handle.net/1842/402
http://hdl.handle.net/1842/402

bibliography 103

[27] M. Menni, Exact completions and toposes, Ph.D. dissertation, University
of Edinburgh, 2000. [Online]. Available: http://hdl.handle.net/
1842/379.

[28] A. Miquel, Implicative algebras: A new foundation for realizability and
forcing, Mathematical Structures in Computer Science, vol. 30, no. 5,
pp. 458–510, 2020.

[29] ——, Implicative algebras ii: Completeness w.r.t. set-based triposes, 2020.
arXiv: 2011.09085 [math.LO].

[30] J. van Oosten, Exercises in realizability, Ph.D. dissertation, University
of Amsterdam, 1991. [Online]. Available: https://eprints.illc.
uva.nl/id/eprint/1858.

[31] ——, A combinatory algebra for sequential functionals of finite type, in
Models and Computability, S. B. Cooper and J. K. Truss, Eds. Cam-
bridge University Press, 1997, pp. 389–406.

[32] ——, The modified realizability topos, Journal of Pure and Applied
Algebra, vol. 116, no. 1, pp. 273–289, 1997.

[33] ——, Realizability: A historical essay, Mathematical Structures in Com-
puter Science, vol. 12, 2002.

[34] ——, Realizability: an Introduction to its Categorical Side. Elsevier Sci-
ence, 2008.

[35] A. M. Pitts, The theory of triposes, Ph.D. dissertation, University of
Cambridge, 1981. [Online]. Available: https://www.cl.cam.ac.uk/
~amp12/papers/thet/thet.pdf.

[36] W. F. Santos and O. Malherbe, The category of implicative algebras and
realizability, Mathematical Structures in Computer Science, vol. 29,
pp. 1575–1606, 2017.

[37] A. Troelstra and D. van Dalen, Constructivism in Mathematics (Studies
in the Logic and the Foundations of Mathematics). North-Holland
Pub. Co., 1991.

[38] M. de Vries, An extensional modified realizability topos, M.S. thesis,
University of Amsterdam, 2017.

[39] J. Zoethout, Computability models and realizability toposes, Ph.D. disser-
tation, 2022. [Online]. Available: https://dspace.library.uu.nl/
handle/1874/416798.

http://hdl.handle.net/1842/379
http://hdl.handle.net/1842/379
https://arxiv.org/abs/2011.09085
https://eprints.illc.uva.nl/id/eprint/1858
https://eprints.illc.uva.nl/id/eprint/1858
https://www.cl.cam.ac.uk/~amp12/papers/thet/thet.pdf
https://www.cl.cam.ac.uk/~amp12/papers/thet/thet.pdf
https://dspace.library.uu.nl/handle/1874/416798
https://dspace.library.uu.nl/handle/1874/416798

	A category of arrow algebras for modified realizability
	Colophon
	Acknowledgements
	Contents

	1 Introduction
	1.1 Intuitionism
	1.2 Realizability
	1.3 Topos theory
	1.4 Realizability toposes
	1.5 In this thesis

	2 Triposes and toposes
	2.1 Preorder-enriched categories
	2.2 Triposes
	2.3 Geometric morphisms

	3 Partial combinatory algebras
	3.1 Partial combinatory algebras
	3.2 Morphisms of partial combinatory algebras
	3.3 Realizability triposes
	3.4 Transformations of realizability triposes

	4 Arrow algebras
	4.1 Arrow algebras
	4.2 Examples

	5 Implicative morphisms
	5.1 Implicative morphisms
	5.2 Examples

	6 Arrow triposes
	6.1 Left exact transformations of arrow triposes
	6.2 Geometric morphisms of arrow triposes
	6.3 Inclusions and surjections
	6.4 Examples

	7 Arrow algebras for modified realizability
	7.1 The Sierpiński construction
	7.2 The modification of an arrow algebra

	8 Arrow assemblies
	8.1 The category of arrow assemblies
	8.2 From arrow assemblies to the arrow topos
	8.3 Constant objects
	8.4 Functors between categories of assemblies

	Conclusion

