Toposes with enough points as categories of étale spaces

Umberto Tarantino jww Sam van Gool and Jérémie Marquès jw in progress with Quentin Aristote

IRIF, Université Paris Cité

ItaCa Workshop 22nd December 2025

Compact Hausdorff spaces and convergence

Theorem (Manes)

CompHaus \cong Alg(β), where β : **Set** \longrightarrow **Set** is the ultrafilter monad.

This means that, for a compact Hausdorff space X, every function $f:I\longrightarrow X$ extends to a function $f^*\colon \beta I\longrightarrow X$ which we can think of as computing the *limit* of f with respect to each $\nu\in\beta I$. Concretely:

$$\eta \uparrow \qquad f^* \qquad f^*(\nu) = x \iff \forall U \subseteq X \text{ open, if } x \in U \text{ then } f^{-1}(U) \in \nu$$

$$I \xrightarrow{f} X$$

In particular, the algebra map $\operatorname{id}_X^* \colon \beta X \longrightarrow X$ specifies, for each ultrafilter ν on X, the unique point of X all of whose open neighborhoods lie in ν .

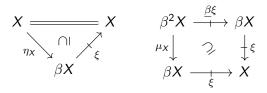
Topological spaces and generalized convergence

For an arbitrary topological space X, these limits may not exist nor be unique, so that the previous definition of id_X^* determines a relation $\beta X \longrightarrow X$.

Theorem (Barr)

The ultrafilter monad β extends to a monad β : Rel \longrightarrow Rel, and Top \cong LaxAlg(β).

This means that a topology on a set X can be equivalently specified by a relation $\xi \colon \beta X \longrightarrow X$ such that:



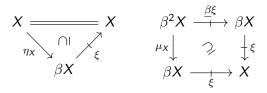
Topological spaces and generalized convergence

For an arbitrary topological space X, these limits may not exist nor be unique, so that the previous definition of id_X^* determines a relation $\beta X \longrightarrow X$.

Theorem (Barr)

The ultrafilter monad β extends to a monad β : Rel \longrightarrow Rel, and Top \cong LaxAlg(β).

This means that a topology on a set X can be equivalently specified by a relation $\xi \colon X \times \beta X \to \mathbf{2}$ such that:



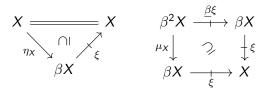
Topological spaces and generalized convergence

For an arbitrary topological space X, these limits may not exist nor be unique, so that the previous definition of id_X^* determines a relation $\beta X \longrightarrow X$.

Theorem (Barr)

The ultrafilter monad β extends to a monad β : Rel \longrightarrow Rel, and Top \cong LaxAlg(β).

This means that a topology on a set X can be equivalently specified by a relation $\xi \colon X \times \beta X \to \mathbf{2}$ such that:



Notation

For $f: I \to X$ and $\nu \in \beta I$, we write $x \leadsto \lim_{i \to \nu} f(i)$ in case $\xi(x, \beta f(\nu))$ holds.

Now: one dimension higher!

Ultracategories and convergence of ultrafamilies

Going one dimension higher, the role of β is played by the *ultracompletion* pseudomonad $\beta: CAT \longrightarrow CAT$. For a category C, the category βC has:

- ▶ as objects, triples (I, y, ν) of a set I, a functor $y: I \to C$, and an ultrafilter $\nu \in \beta I$;
- ▶ as morphisms $(I, y, \nu) \to (I', y', \nu')$, pairs of a function $h: I' \to I$ such that $\beta h(\nu') = \nu$ and a family of arrows $(\alpha_i: y_{h(i)} \to y_i')_{i \in I'}$ in C, both considered up to ν' -equivalence.

Ultracategories and convergence of ultrafamilies

Going one dimension higher, the role of β is played by the *ultracompletion* pseudomonad $\beta: CAT \longrightarrow CAT$. For a category C, the category βC has:

- ▶ as objects, triples (I, y, ν) of a set I, a functor $y: I \to C$, and an ultrafilter $\nu \in \beta I$;
- ▶ as morphisms $(I, y, \nu) \to (I', y', \nu')$, pairs of a function $h: I' \to I$ such that $\beta h(\nu') = \nu$ and a family of arrows $(\alpha_i: y_{h(i)} \to y_i')_{i \in I'}$ in C, both considered up to ν' -equivalence.

Intuitively, an ultracategory is a category C endowed with a functor $\Phi \colon \beta C \longrightarrow C$, assigning a unique *limit* in C to each *ultrafamily* (I, y, ν) in C. Formally, we define:

 $\mathsf{UltCat} \coloneqq \mathsf{PsAlg}(\beta)$

Ultracategories and convergence of ultrafamilies

Going one dimension higher, the role of β is played by the *ultracompletion* pseudomonad $\beta \colon \mathbf{CAT} \longrightarrow \mathbf{CAT}$. For a category C, the category βC has:

- ▶ as objects, triples (I, y, ν) of a set I, a functor $y: I \to C$, and an ultrafilter $\nu \in \beta I$;
- ▶ as morphisms $(I, y, \nu) \to (I', y', \nu')$, pairs of a function $h: I' \to I$ such that $\beta h(\nu') = \nu$ and a family of arrows $(\alpha_i: y_{h(i)} \to y_i')_{i \in I'}$ in C, both considered up to ν' -equivalence.

Intuitively, an ultracategory is a category C endowed with a functor $\Phi \colon \beta C \longrightarrow C$, assigning a unique *limit* in C to each *ultrafamily* (I, y, ν) in C. Formally, we define:

$$\mathsf{UltCat} \coloneqq \mathsf{PsAlg}(\beta)$$

Ultracategories categorify compact Hausdorff spaces

 $\textbf{CompHaus} \hookrightarrow \textbf{UltCat} \text{ as those algebras whose carrier category is small and discrete}.$

Ultracategories were originally introduced by Makkai to prove a reconstruction theorem for (coherent) first-order logic.

Theorem (Makkai; Lurie)

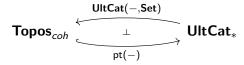
Let \mathbb{T} be a coherent theory. Then, $\mathsf{Mod}(\mathbb{T})$ is an ultracategory by setting the limit of an ultrafamily (I, M_-, ν) of models to be their ultraproduct $\prod_{i \to \nu} M_i$, and $\mathsf{UltCat}(\mathsf{Mod}(\mathbb{T}), \mathsf{Set})$ is the classifying topos of \mathbb{T} .

Ultracategories were originally introduced by Makkai to prove a reconstruction theorem for (coherent) first-order logic.

Theorem (Makkai; Lurie)

Let \mathbb{T} be a coherent theory. Then, $\mathsf{Mod}(\mathbb{T})$ is an ultracategory by setting the limit of an ultrafamily (I, M_-, ν) of models to be their ultraproduct $\prod_{i \to \nu} M_i$, and $\mathsf{UltCat}(\mathsf{Mod}(\mathbb{T}), \mathsf{Set})$ is the classifying topos of \mathbb{T} .

Identifying coherent theories with coherent toposes, and restricting to the subcategory $UltCat_*$ of ultracategories C such that UltCat(C, Set) is a topos, we have:



The previous result crucially rests on Łoś's theorem: for a coherent theory, an ultraproduct of models is itself a model.

The previous result crucially rests on Łoś's theorem: for a coherent theory, an ultraproduct of models is itself a model. For a *geometric* theory, Łoś's theorem fails: categorically, this is encoded by the fact that the ultraproduct functors

$$\mathbf{Set}^I \xrightarrow{\prod_{i \to \nu} (-)} \mathbf{Set}$$

are coherent, but not necessarily geometric functors.

Question

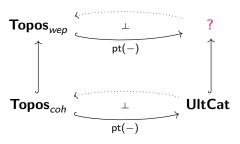
Can we extend the previous to a reconstruction theorem for geometric logic?

Question

Can we extend the previous to a reconstruction theorem for geometric logic?

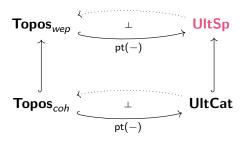
Question

Can we extend the previous to a reconstruction theorem for geometric logic?



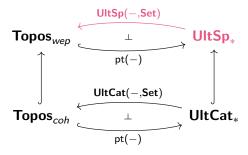
Question

Can we extend the previous to a reconstruction theorem for geometric logic?



Question

Can we extend the previous to a reconstruction theorem for geometric logic?



The key intuition to address this question comes from Barr's theorem: we can generalize ultracategories by replacing the algebra functor with a *profunctor*, and categorifying the description of topological spaces in terms of convergence.

The key intuition to address this question comes from Barr's theorem: we can generalize ultracategories by replacing the algebra functor with a *profunctor*, and categorifying the description of topological spaces in terms of convergence.

Definition

An ultraconvergence space consists of a discrete category X together with a profunctor $\Xi \colon \mathcal{B}X \to X$.

The key intuition to address this question comes from Barr's theorem: we can generalize ultracategories by replacing the algebra functor with a *profunctor*, and categorifying the description of topological spaces in terms of convergence.

Definition

An ultraconvergence space consists of a discrete category X together with a profunctor $\Xi \colon \beta X \to X$,

The key intuition to address this question comes from Barr's theorem: we can generalize ultracategories by replacing the algebra functor with a *profunctor*, and categorifying the description of topological spaces in terms of convergence.

Definition

An ultraconvergence space consists of a discrete category X together with a profunctor $\Xi: X \times \emptyset X \longrightarrow \mathbf{Set}$.

The key intuition to address this question comes from Barr's theorem: we can generalize ultracategories by replacing the algebra functor with a *profunctor*, and categorifying the description of topological spaces in terms of convergence.

Definition

An ultraconvergence space consists of a discrete category X together with a profunctor $\Xi \colon X \times \beta X \longrightarrow \mathbf{Set}$, where elements of $\Xi(x,(I,y,\nu))$ are dubbed ultra-arrows and denoted by $r \colon x \leadsto \lim_{i \to \nu} y_i$.

The key intuition to address this question comes from Barr's theorem: we can generalize ultracategories by replacing the algebra functor with a *profunctor*, and categorifying the description of topological spaces in terms of convergence.

Definition

An ultraconvergence space consists of a discrete category X together with a profunctor $\Xi \colon X \times \beta X \longrightarrow \mathbf{Set}$, where elements of $\Xi(x,(I,y,\nu))$ are dubbed *ultra-arrows* and denoted by $r \colon x \leadsto \lim_{i \to \nu} y_i$. Moreover, X is equipped with:

- ▶ for every $x \in X$, an *identity* ultra-arrow $id_x : x \leadsto \lim_{x \to 1} x$;
- for every ultra-arrow $r: x \leadsto \lim_{i \to \mu} y_i$ and every ultrafamily of ultra-arrows $(s_i: y_i \leadsto \lim_{j \to \nu_i} z_{i,j})_{i \to \mu}$, a composite ultra-arrow $(s_i)_{i \to \mu} \cdot r: x \leadsto \lim_{(i,j) \to \sum_{i \to \mu} \nu_i} z_{i,j}$,

satisfying some equational axioms.

Continuous maps

Similarly, we can extend the notion of continuity to this **Set**-valued convergence relation, which now becomes *structure* rather than *property*.

Continuous maps

Similarly, we can extend the notion of continuity to this **Set**-valued convergence relation, which now becomes *structure* rather than *property*.

Definition

A continuous map of ultraconvergence spaces is a functor $f: X \longrightarrow X'$ together with a family of functions

$$\Xi(x,(I,y,\nu)) \longrightarrow \Xi'(f(x),(I,fy,\nu))$$

$$r: x \leadsto \lim_{i \to \nu} y_i \longmapsto f(r): f(x) \leadsto \lim_{i \to \nu} f(y_i)$$

also satisfying some equational axioms.

With appropriate 2-cells, ultraconvergence spaces define a 2-category UltSp.

Examples

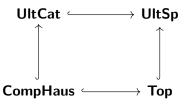
► Every topological space is a **2**-valued ultraconvergence space with the usual convergence relation.

Examples

- ► Every topological space is a **2**-valued ultraconvergence space with the usual convergence relation.
- ► Every ultracategory C, defined by a functor $\Phi \colon \beta C \longrightarrow C$, is an ultraconvergence space by setting ultra-arrows $c \leadsto \lim_{i \to \nu} d_i$ to be arrows $c \to \Phi(I, d, \nu)$ in C.

Examples

- ► Every topological space is a **2**-valued ultraconvergence space with the usual convergence relation.
- ► Every ultracategory C, defined by a functor $\Phi \colon \beta C \longrightarrow C$, is an ultraconvergence space by setting ultra-arrows $c \leadsto \lim_{i \to \nu} d_i$ to be arrows $c \to \Phi(I, d, \nu)$ in C.



The main theorem

As promised, the notion of ultraconvergence space allows us to obtain a reconstruction theorem for geometric logic: in topos-theoretical terms, it reads as follows.

Theorem (Saadia; Hamad; van Gool, Marquès, T.)

If \mathcal{E} is a topos with enough points, then $\mathcal{E} \simeq \mathsf{UltSp}(\mathsf{pt}(\mathcal{E}), \mathsf{Set})$.

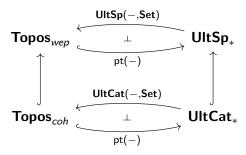
The main theorem

As promised, the notion of ultraconvergence space allows us to obtain a reconstruction theorem for geometric logic: in topos-theoretical terms, it reads as follows.

Theorem (Saadia; Hamad; van Gool, Marquès, T.)

If \mathcal{E} is a topos with enough points, then $\mathcal{E} \simeq \text{UltSp}(\text{pt}(\mathcal{E}), \text{Set})$.

In other words, restricting to the subcategory \mathbf{UltSp}_* of ultraconvergence spaces X such that $\mathbf{UltSp}(X,\mathbf{Set})$ is a topos, we have what we wanted:



Differently than Saadia's and Hamad's approaches, our proof crucially relies on a Grothendieck correspondence for continuous maps towards **Set**, which yields an extension of *local homeomorphisms* from topological to ultraconvergence spaces.

Differently than Saadia's and Hamad's approaches, our proof crucially relies on a Grothendieck correspondence for continuous maps towards **Set**, which yields an extension of *local homeomorphisms* from topological to ultraconvergence spaces.

Definition

A continuous map of ultraconvergence spaces $\pi \colon E \longrightarrow B$ is étale if:

Differently than Saadia's and Hamad's approaches, our proof crucially relies on a Grothendieck correspondence for continuous maps towards **Set**, which yields an extension of *local homeomorphisms* from topological to ultraconvergence spaces.

Definition

A continuous map of ultraconvergence spaces $\pi \colon E \longrightarrow B$ is étale if:

1. for each $b \in B$, the fiber $\pi^{-1}(b)$ is a set;

Differently than Saadia's and Hamad's approaches, our proof crucially relies on a Grothendieck correspondence for continuous maps towards **Set**, which yields an extension of *local homeomorphisms* from topological to ultraconvergence spaces.

Definition

A continuous map of ultraconvergence spaces $\pi \colon E \longrightarrow B$ is étale if:

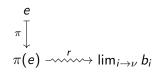
- 1. for each $b \in B$, the fiber $\pi^{-1}(b)$ is a set;
- 2. for each $e \in E$ and each ultra-arrow $r : \pi(e) \leadsto \lim_{i \to \mu} b_i$ in B, there is a unique lift $\bar{r} : e \leadsto \lim_{i \to \mu} e_i$ in E such that $\pi(\bar{r}) = r$.

Differently than Saadia's and Hamad's approaches, our proof crucially relies on a Grothendieck correspondence for continuous maps towards **Set**, which yields an extension of *local homeomorphisms* from topological to ultraconvergence spaces.

Definition

A continuous map of ultraconvergence spaces $\pi \colon E \longrightarrow B$ is étale if:

- 1. for each $b \in B$, the fiber $\pi^{-1}(b)$ is a set;
- 2. for each $e \in E$ and each ultra-arrow $r \colon \pi(e) \leadsto \lim_{i \to \mu} b_i$ in B, there is a unique lift $\bar{r} \colon e \leadsto \lim_{i \to \mu} e_i$ in E such that $\pi(\bar{r}) = r$.



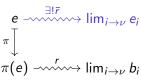
Étale spaces

Differently than Saadia's and Hamad's approaches, our proof crucially relies on a Grothendieck correspondence for continuous maps towards **Set**, which yields an extension of *local homeomorphisms* from topological to ultraconvergence spaces.

Definition

A continuous map of ultraconvergence spaces $\pi \colon E \longrightarrow B$ is étale if:

- 1. for each $b \in B$, the fiber $\pi^{-1}(b)$ is a set;
- 2. for each $e \in E$ and each ultra-arrow $r : \pi(e) \leadsto \lim_{i \to \mu} b_i$ in B, there is a unique lift $\bar{r} : e \leadsto \lim_{i \to \mu} e_i$ in E such that $\pi(\bar{r}) = r$.



Etale spaces

Differently than Saadia's and Hamad's approaches, our proof crucially relies on a Grothendieck correspondence for continuous maps towards Set, which yields an extension of local homeomorphisms from topological to ultraconvergence spaces.

Definition

A continuous map of ultraconvergence spaces $\pi: E \longrightarrow B$ is étale if:

- 1. for each $b \in B$, the fiber $\pi^{-1}(b)$ is a set;
- that $\pi(\bar{r}) = r$.

$$e \xrightarrow{\exists ! \bar{r}} \lim_{i \to \nu} e_i$$

$$\pi \downarrow \qquad \qquad \downarrow \pi$$

$$\pi(e) \xrightarrow{\pi(\bar{r})} \lim_{i \to \nu} \pi(e_i)$$

Etale spaces

Differently than Saadia's and Hamad's approaches, our proof crucially relies on a Grothendieck correspondence for continuous maps towards Set, which yields an extension of local homeomorphisms from topological to ultraconvergence spaces.

Definition

A continuous map of ultraconvergence spaces $\pi: E \longrightarrow B$ is étale if:

- 1. for each $b \in B$, the fiber $\pi^{-1}(b)$ is a set;
- that $\pi(\bar{r}) = r$.

$$e \xrightarrow{\exists ! \bar{r}} \lim_{i \to \nu} e_i$$

$$\pi \downarrow \qquad \qquad \downarrow \pi$$

$$\pi(e) \xrightarrow{\pi(\bar{r})} \lim_{i \to \nu} \pi(e_i)$$

Étale maps over B form a category Et(B), equivalent to UltSp(B, Set).

The ultraconvergence space of points of a topos

Let $\mathcal E$ be a topos with a fixed class of points $X\subseteq \operatorname{pt}(\mathcal E)$.

The ultraconvergence space of points of a topos

Let \mathcal{E} be a topos with a fixed class of points $X \subseteq pt(\mathcal{E})$.

▶ X is an ultraconvergence space by setting ultra-arrows $x \rightsquigarrow \lim_{i \to \nu} y_i$ to be natural transformations $x \Rightarrow \prod_{i \to \nu} y_i$, where $\prod_{i \to \nu} y_i$ is the functor:

$$\mathcal{E} \xrightarrow{\langle y_i \rangle_{i \in I}} \mathbf{Set}^I \xrightarrow{\prod_{i \to \nu} (-)} \mathbf{Set}$$

The ultraconvergence space of points of a topos

Let \mathcal{E} be a topos with a fixed class of points $X \subseteq pt(\mathcal{E})$.

▶ X is an ultraconvergence space by setting ultra-arrows $x \rightsquigarrow \lim_{i \to \nu} y_i$ to be natural transformations $x \Rightarrow \prod_{i \to \nu} y_i$, where $\prod_{i \to \nu} y_i$ is the functor:

$$\mathcal{E} \xrightarrow{\langle y_i \rangle_{i \in I}} \mathbf{Set}^I \xrightarrow{\prod_{i \to \nu} (-)} \mathbf{Set}$$

- ▶ For every object $\varphi \in \mathcal{E}$, we can define an étale space $\pi_{\varphi} \colon \llbracket \varphi \rrbracket \longrightarrow X$ where:
 - ▶ the fiber of π_{φ} at $x \in X$ is given by $x(\varphi)$;
 - ▶ an ultra-arrow $(x, v) \rightsquigarrow \lim_{i \to v} (y_i, w_i)$ in $\llbracket \varphi \rrbracket$ is given by an ultra-arrow $r \colon x \rightsquigarrow \lim_{i \to v} y_i$ in X such that $r_{\varphi}(v) = (w_i)_{i \to v}$.

This assignment defines the *evaluation functor* $\llbracket - \rrbracket : \mathcal{E} \longrightarrow \mathsf{Et}(X)$.

Reconstruction for geometric logic

Theorem

If X is a separating set of points of \mathcal{E} , then $\llbracket - \rrbracket \colon \mathcal{E} \longrightarrow \mathsf{Et}(X)$ is an equivalence.

Reconstruction for geometric logic

Theorem

If X is a separating set of points of \mathcal{E} , then $[-]: \mathcal{E} \longrightarrow \operatorname{Et}(X)$ is an equivalence.

Although we need X to be small to prove the above result, it follows easily that $\mathcal{E} \simeq \mathsf{Et}(\mathsf{pt}(\mathcal{E}))$. In logical terms, this reads as the following reconstruction result.

Theorem

Let \mathbb{T} be a geometric theory which is complete with respect to its **Set**-models. Then, $\mathsf{Mod}(\mathbb{T})$ is an ultraconvergence space by setting ultra-arrows $M \leadsto \lim_{i \to \nu} N_i$ to be structure morphisms $M \to \prod_{i \to \nu} N_i$, and $\mathsf{Et}(\mathsf{Mod}(\mathbb{T}))$ is the classifying topos of \mathbb{T} .

Reconstruction for geometric logic

Theorem

If X is a separating set of points of \mathcal{E} , then $[-]: \mathcal{E} \longrightarrow \operatorname{Et}(X)$ is an equivalence.

Although we need X to be small to prove the above result, it follows easily that $\mathcal{E} \simeq \mathsf{Et}(\mathsf{pt}(\mathcal{E}))$. In logical terms, this reads as the following reconstruction result.

Theorem

Let \mathbb{T} be a geometric theory which is complete with respect to its **Set**-models. Then, $\mathsf{Mod}(\mathbb{T})$ is an ultraconvergence space by setting ultra-arrows $M \leadsto \lim_{i \to \nu} N_i$ to be structure morphisms $M \to \prod_{i \to \nu} N_i$, and $\mathsf{Et}(\mathsf{Mod}(\mathbb{T}))$ is the classifying topos of \mathbb{T} .

The localic/propositional case

In particular, if a localic topos $\mathcal E$ has enough points, i.e. $\mathcal E \simeq \mathsf{Sh}(\mathcal O(X))$ for some topological space X, then $\mathcal E \simeq \mathsf{Et}(X)$.

Our proof is substantially different from both Saadia's and Hamad's, who use Butz-Moerdijk's representation theorem for toposes with enough points. Instead, we proceed similarly to Makkai's original work, in two main steps.

Our proof is substantially different from both Saadia's and Hamad's, who use Butz-Moerdijk's representation theorem for toposes with enough points. Instead, we proceed similarly to Makkai's original work, in two main steps.

1. $\llbracket - \rrbracket \colon \mathcal{E} \longrightarrow \operatorname{Et}(X)$ is full on subobjects: every subobject of $\pi_{\varphi} \colon \llbracket \varphi \rrbracket \longrightarrow X$ in $\operatorname{Et}(X)$ is the restriction of π_{φ} to $\llbracket \psi \rrbracket \subseteq \llbracket \varphi \rrbracket$ for some subobject $\psi \rightarrowtail \varphi$ in \mathcal{E} .

Our proof is substantially different from both Saadia's and Hamad's, who use Butz-Moerdijk's representation theorem for toposes with enough points. Instead, we proceed similarly to Makkai's original work, in two main steps.

- 1. $\llbracket \rrbracket \colon \mathcal{E} \longrightarrow \mathsf{Et}(X)$ is full on subobjects: every subobject of $\pi_{\varphi} \colon \llbracket \varphi \rrbracket \longrightarrow X$ in $\mathsf{Et}(X)$ is the restriction of π_{φ} to $\llbracket \psi \rrbracket \subseteq \llbracket \varphi \rrbracket$ for some subobject $\psi \rightarrowtail \varphi$ in \mathcal{E} .
- 2. $\llbracket \rrbracket \colon \mathcal{E} \longrightarrow \mathsf{Et}(X)$ is covering: every étale space $p \colon Y \longrightarrow X$ is covered by an epimorphism $\alpha \colon \pi_{\varphi} \twoheadrightarrow p$ in $\mathsf{Et}(X)$ for some object $\varphi \in \mathcal{E}$.

Our proof is substantially different from both Saadia's and Hamad's, who use Butz-Moerdijk's representation theorem for toposes with enough points. Instead, we proceed similarly to Makkai's original work, in two main steps.

- 1. $\llbracket \rrbracket \colon \mathcal{E} \longrightarrow \mathsf{Et}(X)$ is full on subobjects: every subobject of $\pi_{\varphi} \colon \llbracket \varphi \rrbracket \longrightarrow X$ in $\mathsf{Et}(X)$ is the restriction of π_{φ} to $\llbracket \psi \rrbracket \subseteq \llbracket \varphi \rrbracket$ for some subobject $\psi \rightarrowtail \varphi$ in \mathcal{E} .
- 2. $\llbracket \rrbracket \colon \mathcal{E} \longrightarrow \mathsf{Et}(X)$ is covering: every étale space $p \colon Y \longrightarrow X$ is covered by an epimorphism $\alpha \colon \pi_{\varphi} \twoheadrightarrow p$ in $\mathsf{Et}(X)$ for some object $\varphi \in \mathcal{E}$.

Two points of view

Concretely, (1) entails fully-faithfulness, while (2) entails essential surjectivity of [-].

Our proof is substantially different from both Saadia's and Hamad's, who use Butz-Moerdijk's representation theorem for toposes with enough points. Instead, we proceed similarly to Makkai's original work, in two main steps.

- 1. $\llbracket \rrbracket \colon \mathcal{E} \longrightarrow \mathsf{Et}(X)$ is full on subobjects: every subobject of $\pi_{\varphi} \colon \llbracket \varphi \rrbracket \longrightarrow X$ in $\mathsf{Et}(X)$ is the restriction of π_{φ} to $\llbracket \psi \rrbracket \subseteq \llbracket \varphi \rrbracket$ for some subobject $\psi \rightarrowtail \varphi$ in \mathcal{E} .
- 2. $\llbracket \rrbracket \colon \mathcal{E} \longrightarrow \mathsf{Et}(X)$ is covering: every étale space $p \colon Y \longrightarrow X$ is covered by an epimorphism $\alpha \colon \pi_{\varphi} \twoheadrightarrow p$ in $\mathsf{Et}(X)$ for some object $\varphi \in \mathcal{E}$.

Two points of view

Concretely, (1) entails fully-faithfulness, while (2) entails essential surjectivity of [-]. However, we can also interpret (1) as stating that [-] defines a hyperconnected geometric morphism, and (2) as stating that it defines a localic geometric morphism.

Ongoing work: ultraconvergence spaces as lax algebras

As it turns out, the inspiration from Barr's theorem can be pushed even further: in joint work in progress with Quentin Aristote, we have the following.

Theorem

The ultracompletion pseudomonad β extends to a pseudomonad $\underline{\beta} \colon \mathsf{PROF} \longrightarrow \mathsf{PROF}$, and $\mathsf{UltSp} \cong \mathsf{discLaxAlg}(\beta)$.

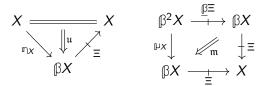
Ongoing work: ultraconvergence spaces as lax algebras

As it turns out, the inspiration from Barr's theorem can be pushed even further: in joint work in progress with Quentin Aristote, we have the following.

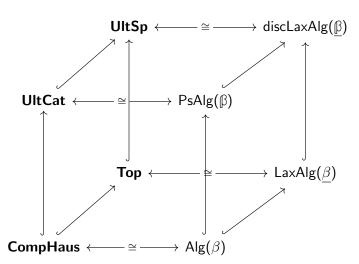
Theorem

The ultracompletion pseudomonad β extends to a pseudomonad $\underline{\beta} \colon \mathsf{PROF} \longrightarrow \mathsf{PROF}$, and $\mathsf{UltSp} \cong \mathsf{discLaxAlg}(\beta)$.

This means that an ultraconvergence structure on a discrete category X can be equivalently specified by a profunctor $\Xi \colon \beta X \longrightarrow X$ and two transformations



satisfying appropriate axioms.



Future work

▶ What is so fundamental about ultrafilters and ultraproducts in the reconstruction theorem? Can we drop the 'ultra' in 'ultraconvergence spaces', and obtain a more constructive version thereof dealing with filters and reduced products?

Future work

- ▶ What is so fundamental about ultrafilters and ultraproducts in the reconstruction theorem? Can we drop the 'ultra' in 'ultraconvergence spaces', and obtain a more constructive version thereof dealing with filters and reduced products?
- ► Towards step (2) of our proof, we prove a kind of Beth definability theorem for geometric logic. What does this perspective entail?

Future work

- What is so fundamental about ultrafilters and ultraproducts in the reconstruction theorem? Can we drop the 'ultra' in 'ultraconvergence spaces', and obtain a more constructive version thereof dealing with filters and reduced products?
- ► Towards step (2) of our proof, we prove a kind of Beth definability theorem for geometric logic. What does this perspective entail?
- Can we describe the equivalences induced by the two adjuctions?

- E. G. Manes (1969). "A triple theoretic construction of compact algebras". In: Seminar on Triples and Categorical Homology Theory. Ed. by B. Eckmann. Vol. 80. Lecture notes in Mathematics. Berlin, Heidelberg: Springer, pp. 91–118.
- M. Barr (1970). "Relational algebras". In: Reports of the Midwest Category Seminar IV. Ed. by S. MacLane et al. Berlin, Heidelberg: Springer, pp. 39–55.
- M. Makkai (1987). "Stone duality for first order logic". In: *Advances in Mathematics* 65.2, pp. 97–170.
- J. Lurie (2018). Ultracategories. Available online.
- R. Garner (2020). "Ultrafilters, finite coproducts and locally connected classifying toposes". In: Annals of Pure and Applied Logic 171.10, p. 102831.
- G. Rosolini (2024). *Ultracompletions*. Talk at CT2024.
- G. Saadia (2025). Extending conceptual completeness via virtual ultracategories. arXiv: 2506.23935 [math.CT].
- A. Hamad (2025). Generalised ultracategories and conceptual completeness of geometric logic. arXiv: 2507.07922 [math.CT].
- S. van Gool, J. Marquès, and U. Tarantino (2025). Toposes with enough points as categories of étale spaces. arXiv: 2508.09604 [math.CT].

Thank you!