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Compact Hausdorff spaces and convergence

Theorem (Manes)

CompHaus ∼= Alg(β), where β : Set −→ Set is the ultrafilter monad.

This means that, for a compact Hausdorff space X , every function f : I −→ X extends

to a function f ∗ : βI −→ X which we can think of as computing the limit of f with

respect to each ν ∈ βI . Concretely:

βI

I X

f ∗ηI

f

f ∗(ν) = x ⇐⇒ ∀U ⊆ X open, if x ∈ U then f −1(U) ∈ ν

In particular, the algebra map id∗
X : βX −→ X specifies, for each ultrafilter ν on X , the

unique point of X all of whose open neighborhoods lie in ν.
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Topological spaces and generalized convergence

For an arbitrary topological space X , these limits may not exist nor be unique, so that

the previous definition of id∗
X determines a relation between βX and X .

Theorem (Barr)

The ultrafilter monad β extends to a monad β : Rel −→ Rel, and Top ∼= LaxAlg(β).

This means that a topology on a set X can be equivalently specified by a relation

ξ : βX −7→ X such that:

X X

βX

ηX ξ
p⊇

β2X βX

βX X

βξ

p
µX ξp⊇

ξ
p

Notation

For f : I → X and ν ∈ βI , we write x ⇝ limi→ν f (i) in case ξ(x , βf (ν)) holds.
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Now: one dimension higher!



Ultracategories and convergence of ultrafamilies

Going one dimension higher, the role of β is played by the ultracompletion

pseudomonad β : CAT −→ CAT. For a category C , the category βC has:

▶ as objects, triples (I , y , ν) of a set I , a functor y : I → C , and an ultrafilter ν ∈ βI ;

▶ as morphisms (I , y , ν)→ (I ′, y ′, ν′), pairs of a function h : I ′ → I such that βh(ν′) = ν

and a family of arrows (αi : yh(i) → y ′
i )i∈I ′ in C , both considered up to ν′-equivalence.

Intuitively, an ultracategory is a category C endowed with a functor Φ : βC −→ C ,

assigning a unique limit in C to each ultrafamily (I , y , ν) in C . Formally, we define:

UltCat := PsAlg(β)

Ultracategories categorify compact Hausdorff spaces

CompHaus ↪→ UltCat as those algebras whose carrier category is small and discrete.
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Ultracategories and coherent theories

Ultracategories were originally introduced by Makkai to prove a reconstruction theorem

for (coherent) first-order logic.

▶ In the propositional case, such a reconstruction theorem is given by Stone duality.

For a (classical) theory T, the set Mod(T) admits a natural Stone topology such

that Stone(Mod(T), 2) is the (Boolean) Lindenbaum-Tarski algebra of T.

For first-order logic, the role of Lindenbaum-Tarski algebras is played by classifying

toposes: theories with equivalent classifying toposes have essentially the same models.

Theorem (Makkai; Lurie)

Let T be a coherent theory. Then, Mod(T) is an ultracategory by setting the limit of

an ultrafamily (I ,M−, ν) of models to be their ultraproduct
∏

i→ν Mi , and

UltCat(Mod(T),Set) is the classifying topos of T.
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Ultracategories and coherent toposes

Identifying coherent theories with coherent toposes, and restricting to the subcategory

UltCat∗ of ultracategories C such that UltCat(C ,Set) is a topos, we have:

Toposcoh UltCat∗

pt(−)

UltCat(−,Set)

⊣

This result crucially rests on  Loś’s theorem: for a coherent theory, an ultraproduct of

models is itself a model. Categorically, this is encoded by the fact that the

ultraproduct functors

SetI Set
∏

i→ν(−)

are coherent, i.e. they preserve finite limits, regular epimorphisms, and finite unions of

subobjects.
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What about geometric logic?

We will now consider geometric logic: a theory is geometric if its axioms are of the

form ∀x⃗(φ(x⃗)→ ψ(x⃗)) where φ,ψ are built only using finitary ∧, infinitary ∨, and ∃.

For a geometric theory,  Loś’s theorem fails: the ultraproduct functors are not

geometric, as they don’t preserve arbitrary unions of subobjects.

Question

Can we extend the previous to a reconstruction theorem for geometric logic?

A necessary restriction

Having such a result, for a geometric theory T, entails its completeness with respect to

its (Set-)models. Categorically, this corresponds to restricting to toposes with enough

points, a condition analogue to spatiality for locales.
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For a geometric theory,  Loś’s theorem fails: the ultraproduct functors are not

geometric, as they don’t preserve arbitrary unions of subobjects.

Question

Can we extend the previous to a reconstruction theorem for geometric logic?

A necessary restriction

Having such a result, for a geometric theory T, entails its completeness with respect to

its (Set-)models. Categorically, this corresponds to restricting to toposes with enough

points, a condition analogue to spatiality for locales.

7 / 19



What about geometric logic?

We will now consider geometric logic: a theory is geometric if its axioms are of the

form ∀x⃗(φ(x⃗)→ ψ(x⃗)) where φ,ψ are built only using finitary ∧, infinitary ∨, and ∃.
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Ultraconvergence spaces

The key intuition to address this question comes from Barr’s theorem: we can

generalize ultracategories by replacing the algebra functor with a profunctor, and

categorifying the description of topological spaces in terms of convergence.

Definition
An ultraconvergence space consists of a discrete category X together with a profunctor

Ξ: βX −7→ X , where elements of Ξ(x , (I , y , ν)) are dubbed ultra-arrows and denoted

by r : x ⇝ limi→ν yi . Moreover, X is equipped with:

▶ for every x ∈ X , an identity ultra-arrow idx : x ⇝ lim∗→1 x ;

▶ for every ultra-arrow r : x ⇝ limi→µ yi and every ultrafamily of ultra-arrows

(si : yi ⇝ limj→νi zi,j)i→µ, a composite ultra-arrow (si )i→µ · r : x ⇝ lim(i,j)→
∑

i→µ νi
zi,j ,

satisfying some equational axioms.
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Continuous maps

Similarly, we can extend the notion of continuity to this Set-valued convergence

relation, which now becomes structure rather than property.

Definition

A continuous map of ultraconvergence spaces is a functor f : X −→ X ′ together with a

family of functions

Ξ(x , (I , y , ν)) Ξ′(f (x), (I , fy , ν))

r : x ⇝ limi→ν yi f (r) : f (x)⇝ limi→ν f (yi )

also satisfying some equational axioms.

With appropriate 2-cells, ultraconvergence spaces define a 2-category UltSp.
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Examples

▶ Every topological space is a 2-valued ultraconvergence space with the usual

convergence relation.

▶ Every ultracategory C , defined by a functor Φ : βC −→ C , is an ultraconvergence

space by setting ultra-arrows c ⇝ limi→ν di to be arrows c → Φ(I , d , ν) in C .

UltCat UltSp

CompHaus Top
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The main theorem

As promised, the notion of ultraconvergence space allows us to obtain a reconstruction

theorem for geometric logic: in topos-theoretical terms, it reads as follows.

Theorem (Saadia; Hamad; van Gool, Marquès, T.)

If E is a topos with enough points, then E ≃ UltSp(pt(E),Set).

In other words, restricting to the subcategory UltSp∗ of ultraconvergence spaces X

such that UltSp(X ,Set) is a topos, we have what we wanted:

Toposwep UltSp∗

Toposcoh UltCat∗

pt(−)

UltSp(−,Set)

pt(−)

UltCat(−,Set)

⊣
⊣
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Étale spaces

Differently than Saadia’s and Hamad’s approaches, our proof crucially relies on a

Grothendieck correspondence for continuous maps towards Set, which yields an

extension of local homeomorphisms from topological to ultraconvergence spaces.

Definition

A continuous map of ultraconvergence spaces π : E −→ B is étale if:

1. for each b ∈ B, the fiber π−1(b) is a set;

2. for each e ∈ E and each ultra-arrow r : π(e)⇝ limi→µ bi

in B, there is a unique lift r̄ : e ⇝ limi→µ ei in E such

that π(r̄) = r .

e

π(e)

π

limi→ν bi
r

limi→ν ei
∃!r̄

π

Étale maps over B form a category Et(B), equivalent to UltSp(B,Set).
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Étale maps over B form a category Et(B), equivalent to UltSp(B,Set).

13 / 19
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Étale spaces

Differently than Saadia’s and Hamad’s approaches, our proof crucially relies on a

Grothendieck correspondence for continuous maps towards Set, which yields an

extension of local homeomorphisms from topological to ultraconvergence spaces.

Definition

A continuous map of ultraconvergence spaces π : E −→ B is étale if:

1. for each b ∈ B, the fiber π−1(b) is a set;

2. for each e ∈ E and each ultra-arrow r : π(e)⇝ limi→µ bi

in B, there is a unique lift r̄ : e ⇝ limi→µ ei in E such

that π(r̄) = r .

e

π(e)

π

limi→ν π(ei )
π(r̄)

limi→ν ei
∃!r̄

π
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The ultraconvergence space of points of a topos

Let E be a topos with a fixed class of points X ⊆ pt(E).

▶ X is an ultraconvergence space by setting ultra-arrows x ⇝ limi→ν yi to be

natural transformations x ⇒
∏

i→ν yi , where
∏

i→ν yi is the functor:

E SetI Set
⟨yi ⟩i∈I

∏
i→ν(−)

▶ For every object φ ∈ E , we can define an étale space πφ : JφK −→ X where:

▶ the fiber of πφ at x ∈ X is given by x(φ);

▶ an ultra-arrow (x , v)⇝ limi→ν(yi ,wi ) in JφK is given by an ultra-arrow

r : x ⇝ limi→ν yi in X such that rφ(v) = (wi )i→ν .

This assignment defines the evaluation functor J−K : E −→ Et(X ).
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Reconstruction for geometric logic

Theorem

If X is a separating set of points of E , then J−K : E −→ Et(X ) is an equivalence.

Although we need X to be small to prove the above result, it follows easily that

E ≃ Et(pt(E)). In logical terms, this reads as the following reconstruction result.

Theorem

Let T be a geometric theory which is complete with respect to its Set-models. Then,

Mod(T) is an ultraconvergence space by setting ultra-arrows M ⇝ limi→ν Ni to be

structure morphisms M →
∏

i→ν Ni , and Et(Mod(T)) is the classifying topos of T.

The localic/propositional case

In particular, if a localic topos E has enough points, i.e. E ≃ Sh(O(X )) for some

topological space X , then E ≃ Et(X ).
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Proof sketch

Our proof is substantially different from both Saadia’s and Hamad’s, who use

Butz-Moerdijk’s representation theorem for toposes with enough points. Instead, we

proceed similarly to Makkai’s original work, in two main steps.

1. J−K : E −→ Et(X ) is full on subobjects: every subobject of πφ : JφK −→ X in

Et(X ) is the restriction of πφ to JψK ⊆ JφK for some subobject ψ↣ φ in E .

2. J−K : E −→ Et(X ) is covering: every étale space p : Y −→ X is covered by an

epimorphism α : πφ ↠ p in Et(X ) for some object φ ∈ E .

Two points of view

Concretely, (1) entails fully-faithfulness, while (2) entails essential surjectivity of J−K.

However, we can also interpret (1) as stating that J−K defines a hyperconnected

geometric morphism, and (2) as stating that it defines a localic geometric morphism.
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Ultraconvergence spaces as profunctorial algebras

As it turns out, the inspiration from Barr’s theorem can be pushed even further.

First, just as how the ultrafilter monad β extends to relations, we can extend the

ultracompletion pseudomonad β to profunctors.

Theorem (Aristote, T.)

The ultracompletion pseudomonad β extends to a pseudomonad β : PROF −→ PROF.

The idea is that, as we can represent a relation R : X −7→ Y via the span

X
πX←−− R

πY−−→ Y of its two projection maps, we can identify a profunctor F : C −7→ D

with a span C
πC←− RF

πD−−→ D of functors. This allows us to define β by setting:

RF

C D

πC πD

βRF

βC βD

βπC βπD
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Ultraconvergence spaces as profunctorial algebras

Then, an ultraconvergence structure on a discrete category X can be equivalently

specified by a profunctor Ξ: βX −7→ X and two transformations

X X

βX

ηX Ξ

pu

β2X βX

βX X

βΞ
p

µX
m Ξp
Ξ
p

satisfying the coherence axioms of a lax β-algebra.

Theorem (Aristote, T.)

Ultraconvergence spaces coincide with the discrete lax β-algebras.
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UltSp discLaxAlg(β)

UltCat PsAlg(β)

Top LaxAlg(β)

CompHaus Alg(β)

∼=

∼=

∼=

∼=



Future work

▶ What is so fundamental about ultrafilters and ultraproducts in the reconstruction

theorem? Can we drop the ‘ultra’ in ‘ultraconvergence spaces’, and obtain a more

constructive version thereof dealing with filters and reduced products?

▶ Towards step (2) of our proof, we prove a kind of Beth definability theorem for

geometric logic. What does this perspective entail?

▶ Can we describe the equivalences induced by the two adjuctions?

Thank you!
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