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Compact Hausdorff spaces and convergence

Theorem (Manes)
CompHaus = Alg(3), where 3: Set — Set is the ultrafilter monad.

This means that, for a compact Hausdorff space X, every function f: | — X extends
to a function f*: S — X which we can think of as computing the /imit of f with

respect to each v € /. Concretely:

nIT \ f*(v) =x <= YU C X open, if x € U then f~}(U) € v
/*> X

In particular, the algebra map idy : 58X — X specifies, for each ultrafilter v on X, the

unique point of X all of whose open neighborhoods lie in v.
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Topological spaces and generalized convergence

For an arbitrary topological space X, these limits may not exist nor be unique, so that
the previous definition of id} determines a relation between 53X and X.

Theorem (Barr)
The ultrafilter monad 3 extends to a monad [3: Rel —: Rel, and Top = LaxAlg(3).

This means that a topology on a set X can be equivalently specified by a relation
& BX —+ X such that:

B¢
BPX —— BX

X — X
N w2 s
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Topological spaces and generalized convergence

For an arbitrary topological space X, these limits may not exist nor be unique, so that
the previous definition of id} determines a relation between 53X and X.

Theorem (Barr)
The ultrafilter monad 3 extends to a monad [3: Rel —: Rel, and Top = LaxAlg(3).
This means that a topology on a set X can be equivalently specified by a relation

&: X x X — 2 such that:

B¢
N e

Notation

For f: I — X and v € g1, we write x ~~ lim;_,,, f(i) in case &(x, 5f(v)) holds.
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Now: one dimension higher!



Ultracategories and convergence of ultrafamilies

Going one dimension higher, the role of 3 is played by the ultracompletion
pseudomonad : CAT — CAT. For a category C, the category C has:

> as objects, triples (/,y,v) of a set I, a functor y: | — C, and an ultrafilter v € 1,

» as morphisms (I, y,v) — (I’,y’,v'), pairs of a function h: I’ — [ such that Sh(v') = v
and a family of arrows (c;: k(i) — ¥j)icr in C, both considered up to v'-equivalence.
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» as morphisms (I, y,v) — (I’,y’,v'), pairs of a function h: I’ — [ such that Sh(v') = v
and a family of arrows (c;: k(i) — ¥j)icr in C, both considered up to v'-equivalence.

Intuitively, an ultracategory is a category C endowed with a functor #: C — C,

assigning a unique /limit in C to each ultrafamily (I,y,v) in C. Formally, we define:

UltCat = PsAlg( )

Ultracategories categorify compact Hausdorff spaces

CompHaus — UltCat as those algebras whose carrier category is small and discrete.
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Ultracategories and coherent theories

Ultracategories were originally introduced by Makkai to prove a reconstruction theorem
for (coherent) first-order logic.
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Ultracategories were originally introduced by Makkai to prove a reconstruction theorem

for (coherent) first-order logic.

» In the propositional case, such a reconstruction theorem is given by Stone duality.
For a (classical) theory T, the set Mod(T) admits a natural Stone topology such
that Stone(Mod(T), 2) is the (Boolean) Lindenbaum-Tarski algebra of T.

For first-order logic, the role of Lindenbaum-Tarski algebras is played by classifying

toposes: theories with equivalent classifying toposes have essentially the same models.

Theorem (Makkai; Lurie)

Let T be a coherent theory. Then, Mod(T) is an ultracategory by setting the limit of
an ultrafamily (I, M_,v) of models to be their ultraproduct [];_,, M;, and

UltCat(Mod(T), Set) is the classifying topos of T.

i—v
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Ultracategories and coherent toposes

Identifying coherent theories with coherent toposes, and restricting to the subcategory
UltCat, of ultracategories C such that UltCat(C, Set) is a topos, we have:

UltCat(—,Set)

/_\
Topos,,, € UltCat,

~
pt(—)
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Ultracategories and coherent toposes

Identifying coherent theories with coherent toposes, and restricting to the subcategory
UltCat, of ultracategories C such that UltCat(C, Set) is a topos, we have:

UltCat(—,Set)

/_\
Topos,,, € UltCat,

o
pt(—)
This result crucially rests on tos's theorem: for a coherent theory, an ultraproduct of
models is itself a model. Categorically, this is encoded by the fact that the
ultraproduct functors

Hl‘—)u(_)
e

Set/ Set

are coherent, i.e. they preserve finite limits, regular epimorphisms, and finite unions of

subobjects.
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What about geometric logic?

We will now consider geometric logic: a theory is geometric if its axioms are of the
form VX(p(X) — ¥(X)) where o, are built only using finitary A, infinitary V, and 3.
For a geometric theory, Lo$'s theorem fails: the ultraproduct functors are not
geometric, as they don’t preserve arbitrary unions of subobjects.
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We will now consider geometric logic: a theory is geometric if its axioms are of the
form VX(p(X) — ¥(X)) where o, are built only using finitary A, infinitary V, and 3.
For a geometric theory, Lo$'s theorem fails: the ultraproduct functors are not
geometric, as they don’t preserve arbitrary unions of subobjects.

Question

Can we extend the previous to a reconstruction theorem for geometric logic?

A necessary restriction

Having such a result, for a geometric theory T, entails its completeness with respect to
its (Set-)models. Categorically, this corresponds to restricting to toposes with enough

points, a condition analogue to spatiality for locales.
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What about geometric logic?

UltSp(—,Set)

UltCat(—,Set)
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Ultraconvergence spaces

The key intuition to address this question comes from Barr’s theorem: we can
generalize ultracategories by replacing the algebra functor with a profunctor, and

categorifying the description of topological spaces in terms of convergence.
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Ultraconvergence spaces

The key intuition to address this question comes from Barr’s theorem: we can
generalize ultracategories by replacing the algebra functor with a profunctor, and

categorifying the description of topological spaces in terms of convergence.

Definition

An ultraconvergence space consists of a discrete category X together with a profunctor
=: X x X — Set, where elements of =(x, (/,y,v)) are dubbed ultra-arrows and
denoted by r: x ~» lim;_,, y;. Moreover, X is equipped with:

> for every x € X, an identity ultra-arrow idy: x ~ lim,_1 x;

» for every ultra-arrow r: x ~ lim;_,,, y; and every ultrafamily of ultra-arrows

(si: yi~limj_,, 2 j)iosu, @ composite ultra-arrow (s;)i, - r: x ~ Iim(,-,j)_>z/_ﬂt vi Zij

satisfying some equational axioms.
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Continuous maps

Similarly, we can extend the notion of continuity to this Set-valued convergence

relation, which now becomes structure rather than property.
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Continuous maps

Similarly, we can extend the notion of continuity to this Set-valued convergence

relation, which now becomes structure rather than property.

Definition
A continuous map of ultraconvergence spaces is a functor f: X — X’ together with a

family of functions
=(x, (1,y,v)) — Z(f(x), (I, fy,v))
rox > limjs, yi —— f(r): f(x) ~ limj, f(yi)

also satisfying some equational axioms.
With appropriate 2-cells, ultraconvergence spaces define a 2-category UltSp.
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» Every topological space is a 2-valued ultraconvergence space with the usual

convergence relation.
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Examples

» Every topological space is a 2-valued ultraconvergence space with the usual
convergence relation.
» Every ultracategory C, defined by a functor #: C — C, is an ultraconvergence

space by setting ultra-arrows ¢ ~» lim;_,, d; to be arrows ¢ — @(/,d,v) in C.

UltCat — > UItSp

CompHaus ——— Top
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The main theorem

As promised, the notion of ultraconvergence space allows us to obtain a reconstruction

theorem for geometric logic: in topos-theoretical terms, it reads as follows.

Theorem (Saadia; Hamad; van Gool, Marques, T.)
If € is a topos with enough points, then £ ~ UltSp(pt(£), Set).
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The main theorem

As promised, the notion of ultraconvergence space allows us to obtain a reconstruction

theorem for geometric logic: in topos-theoretical terms, it reads as follows.

Theorem (Saadia; Hamad; van Gool, Marques, T.)
If € is a topos with enough points, then £ ~ UltSp(pt(£), Set).
In other words, restricting to the subcategory UItSp, of ultraconvergence spaces X
such that UItSp(X, Set) is a topos, we have what we wanted:
UItSp(—,Set)
Topos,,, LT UltSp,
UltCat(—,Set)
Topos,,, N UltCat,

pt(—)
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Etale spaces

Differently than Saadia’'s and Hamad's approaches, our proof crucially relies on a
Grothendieck correspondence for continuous maps towards Set, which yields an
extension of local homeomorphisms from topological to ultraconvergence spaces.
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Differently than Saadia’'s and Hamad's approaches, our proof crucially relies on a
Grothendieck correspondence for continuous maps towards Set, which yields an
extension of local homeomorphisms from topological to ultraconvergence spaces.

Definition
A continuous map of ultraconvergence spaces m: E — B is étale if:
- _ . Ell3 :
1. for each b € B, the fiber 7=1(b) is a set; e —nnrnns lim; L, €
2. for each e € E and each ultra-arrow r: m(e) ~ limj_, b; 7{ IW

m(F)

in B, there is a unique lift 7: e ~» lim;_,, & in E such 7T(e) lim;_,, Tr(e,-)

that w(7) = r.

Etale maps over B form a category Et(B), equivalent to UltSp(B, Set).
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Let £ be a topos with a fixed class of points X C pt(E).
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The ultraconvergence space of points of a topos

Let £ be a topos with a fixed class of points X C pt(E).

> X is an ultraconvergence space by setting ultra-arrows x ~» lim;_,, y; to be

natural transformations x = [],_,, yi, where [],_,, yi is the functor:

Hi%u(_)

Oiies Set/ — =~ Set

&

» For every object ¢ € £, we can define an étale space 7, : [¢] — X where:

> the fiber of 7, at x € X is given by x(¢);
» an ultra-arrow (x, v) ~ lim;,(yi, w;) in [¢] is given by an ultra-arrow

r:x ~»limj_, y; in X such that r (v) = (w;)i-..

This assignment defines the evaluation functor [—]: £ — Et(X).
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Reconstruction for geometric logic

Theorem
If X is a separating set of points of £, then [—]: £ — Et(X) is an equivalence.
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Theorem
If X is a separating set of points of £, then [—]: £ — Et(X) is an equivalence.
Although we need X to be small to prove the above result, it follows easily that

& ~ Et(pt(€)). In logical terms, this reads as the following reconstruction result.

Theorem

Let T be a geometric theory which is complete with respect to its Set-models. Then,
Mod(T) is an ultraconvergence space by setting ultra-arrows M ~~ lim;_,,, N; to be
structure morphisms M — [],_,, N;, and Et(Mod(T)) is the classifying topos of T.

The localic/propositional case

In particular, if a localic topos £ has enough points, i.e. £ ~ Sh(O(X)) for some
topological space X, then £ ~ Et(X).
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Proof sketch

Our proof is substantially different from both Saadia’'s and Hamad's, who use
Butz-Moerdijk's representation theorem for toposes with enough points. Instead, we

proceed similarly to Makkai's original work, in two main steps.
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Our proof is substantially different from both Saadia’'s and Hamad's, who use
Butz-Moerdijk's representation theorem for toposes with enough points. Instead, we
proceed similarly to Makkai's original work, in two main steps.
1. [-]: & — Et(X) is full on subobjects: every subobject of m,: [¢] — X in
Et(X) is the restriction of 7, to [¢/] C [¢] for some subobject ) — ¢ in &.
2. [-]: &€ — Et(X) is covering: every étale space p: Y — X is covered by an
epimorphism «: m, — p in Et(X) for some object ¢ € £.

Two points of view

Concretely, (1) entails fully-faithfulness, while (2) entails essential surjectivity of [—].
However, we can also interpret (1) as stating that [—] defines a hyperconnected

geometric morphism, and (2) as stating that it defines a localic geometric morphism.
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Ultraconvergence spaces as profunctorial algebras

As it turns out, the inspiration from Barr’s theorem can be pushed even further.
First, just as how the ultrafilter monad (5 extends to relations, we can extend the

ultracompletion pseudomonad to profunctors.

Theorem (Aristote, T.)
The ultracompletion pseudomonad  extends to a pseudomonad : PROF — PROF.

The idea is that, as we can represent a relation R: X —— Y via the span
X RIL Y of its two prOJectlon maps, we can identify a profunctor F: C — D
with a span C << Rr =2 D of functors. This allows us to define by setting:

Re Re
C D C
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Ultraconvergence spaces as profunctorial algebras

Then, an ultraconvergence structure on a discrete category X can be equivalently

specified by a profunctor =: X — X and two transformations

X ——— X 2X S X
u —
A A =
X X —+— X
satisfying the coherence axioms of a lax -algebra.

Theorem (Aristote, T.)

Ultraconvergence spaces coincide with the discrete lax -algebras.
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UltSp

S

UltCat

o)

R

v

Top

= discLaxAlg( )

PsAlg( )

LaxAUIg(ﬁ)
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CompHaus «——=~—— Alg(5)



Future work

» What is so fundamental about ultrafilters and ultraproducts in the reconstruction
theorem? Can we drop the ‘ultra’ in ‘ultraconvergence spaces’, and obtain a more

constructive version thereof dealing with filters and reduced products?
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Future

work

What is so fundamental about ultrafilters and ultraproducts in the reconstruction
theorem? Can we drop the ‘ultra’ in ‘ultraconvergence spaces’, and obtain a more

constructive version thereof dealing with filters and reduced products?

Towards step (2) of our proof, we prove a kind of Beth definability theorem for

geometric logic. What does this perspective entail?

Can we describe the equivalences induced by the two adjuctions?

Thank you!
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