Where do ultracategories come from?

Umberto Tarantino joint work with Joshua Wrigley

IRIF, Université Paris Cité

CT, Brno, Czech Republic 14th July 2025

Compact Hausdorff spaces and the ultrafilter monad

Compact Hausdorff spaces enjoy two remarkable properties:

- 1. they are algebras for the $\textit{ultrafilter monad}\ \langle \beta, \eta, \mu \rangle$ on Set;
- 2. the functor $\beta \colon \mathsf{Set} \to \mathsf{Set}$ is a right Kan extension.

Compact Hausdorff spaces and the ultrafilter monad

Compact Hausdorff spaces enjoy two remarkable properties:

- 1. they are algebras for the *ultrafilter monad* $\langle \beta, \eta, \mu \rangle$ on Set;
- 2. the functor $\beta \colon \mathsf{Set} \to \mathsf{Set}$ is a right Kan extension.

In *no-iteration form*, the monad $\langle \beta, \eta, \mu \rangle$ can be equivalently described by

- ▶ a function $\eta_X : X \to \beta X$ for each set X,
- ▶ and a function $(-)^*$: Set $(Y, \beta X) \to \text{Set}(\beta Y, \beta X)$ for each pair of sets X, Y, satisfying equations.

Compact Hausdorff spaces and the ultrafilter monad

Compact Hausdorff spaces enjoy two remarkable properties:

- 1. they are algebras for the *ultrafilter monad* $\langle \beta, \eta, \mu \rangle$ on Set;
- 2. the functor $\beta \colon \mathsf{Set} \to \mathsf{Set}$ is a right Kan extension.

In *no-iteration form*, the monad $\langle \beta, \eta, \mu \rangle$ can be equivalently described by

- ▶ a function $\eta_X : X \to \beta X$ for each set X,
- ▶ and a function $(-)^*$: Set $(Y, \beta X) \to$ Set $(\beta Y, \beta X)$ for each pair of sets X, Y, Y

satisfying equations. In the same spirit, a β -algebra K is equivalently described by a function

$$(-)^K : \mathsf{Set}(Y,K) \longrightarrow \mathsf{Set}(\beta Y,K)$$

for each set Y, satisfying equations. Intuitively, $h^K(\nu) \in K$ is the *topological limit* of a family $h \colon Y \to K$ of points of K with respect to the ultrafilter $\nu \in \beta Y$.

Ultracategories

Ultracategories were introduced by Makkai as categories endowed with structure meant to abstract the notion of ultraproducts from model theory. Different definitions exist, but the core is that of a category C with a functor

$$(-)^C \colon [Y,C] \longrightarrow [\beta Y,C]$$

for each set Y, which Makkai calls a *pre-ultracategory*. Intuitively, $h^C(\nu)$ is the 'ultraproduct' of a family $h: Y \to C$ of objects of C with respect to the ultrafilter $\nu \in \beta Y$.

Makkai, Stone duality for first-order logic, 1987

Lurie, *Ultracategories*, 2018

Main example

 $\operatorname{\mathsf{Mod}}(\mathbb{T})$, for a coherent theory \mathbb{T} , is an ultracategory: $(-)^{\operatorname{\mathsf{Mod}}(\mathbb{T})}$ maps a tuple $(M_y)_{y\in Y}$ of models and an ultrafilter $\nu\in\beta Y$ to the actual ultraproduct $\prod_{\nu}M_y$.

Question

Ultracategories categorify compact Hausdorff spaces. Can we make an axiomatisation of the notion of ultracategory emerge just as naturally, i.e. as

- 1. algebras for a pseudomonad on CAT,
- 2. whose underlying pseudofunctor is universally-induced by $\beta \colon \mathsf{Set} \to \mathsf{Set}$?

Question

Ultracategories categorify compact Hausdorff spaces. Can we make an axiomatisation of the notion of ultracategory emerge just as naturally, i.e. as

- 1. algebras for a pseudomonad on CAT,
- 2. whose underlying pseudofunctor is universally-induced by $\beta \colon \mathsf{Set} \to \mathsf{Set}$?

"[Both Makkai's and Lurie's definitions of an ultracategory are] very heavy, and come together with axioms whose choice seems quite arbitrary."

Di Liberti, *The geometry of coherent topoi and ultrastructures*, 2022

"Ultraproducts are categorically inevitable."

Leinster, Codensity and the ultrafilter monad,

2018

Question

Ultracategories categorify compact Hausdorff spaces. Can we make an axiomatisation of the notion of ultracategory emerge just as naturally, i.e. as

- 1. algebras for a pseudomonad on CAT,
- 2. whose underlying pseudofunctor is universally-induced by $\beta \colon \mathsf{Set} \to \mathsf{Set}$?

Earlier work in this direction tries to tackle the problem directly, by defining suitable pseudomonads on CAT.

Marmolejo, Ultraproducts and continuous families of models, 1995

Rosolini, *Ultracompletions*, talk at CT2024

Hamad, Ultracategories as colax algebras for a pseudo-monad on CAT, 2025

Question

Ultracategories categorify compact Hausdorff spaces. Can we make an axiomatisation of the notion of ultracategory emerge just as naturally, i.e. as

- 1. algebras for a pseudomonad on CAT,
- 2. whose underlying pseudofunctor is universally-induced by $\beta \colon \mathsf{Set} \to \mathsf{Set}$?

Our answer

We will make an axiomatisation emerge by putting ultracategories in the context of relative monad theory. The starting point is that Lurie's definition is almost that of a colax algebra for a relative 2-monad over CAT.

Altenkirch, Chapman, Uustalu, Monads need not be endofunctors, 2015 Fiore, Gambino, Hyland, Winskel, Relative pseudomonads, Kleisli bicategories and substitution monoidal structures, 2018

Relative 2-monads

Definition

Let $J: \mathcal{B} \to \mathsf{CAT}$ be a 2-functor.

A *J-relative 2-monad* on CAT is given by

- 1. a category Tb, for each $b \in \mathcal{B}$,
- 2. a functor $\eta_b : Jb \to Tb$ for each $b \in \mathcal{B}$,
- 3. and a functor $(-)^*$: $[Jb, Tb'] \rightarrow [Tb, Tb']$ for c. $(f^* \circ g)^* = f^* \circ g^*$. each pair $b, b' \in \mathcal{B}$,

satisfying the conditions:

- a. $\eta_b^* = \operatorname{id}_{Tb}$,
- b. $f^* \circ n_b = f$.

Relative 2-monads

Definition

Let $J: \mathcal{B} \to \mathsf{CAT}$ be a 2-functor.

A *J-relative 2-monad* on CAT is given by

- 1. a category Tb, for each $b \in \mathcal{B}$,
- 2. a functor $\eta_b : Jb \to Tb$ for each $b \in \mathcal{B}$,
- 3. and a functor $(-)^*$: $[Jb, Tb'] \rightarrow [Tb, Tb']$ for c. $(f^* \circ g)^* = f^* \circ g^*$. each pair $b, b' \in \mathcal{B}$.

satisfying the conditions:

- a. $\eta_b^* = \operatorname{id}_{Tb}$,
- b. $f^* \circ \eta_b = f$.

The relative ultrafilter 2-monad

If J is 2-fully-faithful, every 2-monad $\langle T, \eta, (-)^* \rangle$ on \mathcal{B} yields a J-relative 2-monad $\langle JT, J\eta, J(-)^*J^{-1}\rangle$ on CAT. In particular, considering the inclusion Set \hookrightarrow CAT, the ultrafilter monad $\beta \colon \mathsf{Set} \to \mathsf{Set}$ yields the *relative ultrafilter 2-monad* $\beta \colon \mathsf{Set} \to \mathsf{CAT}$.

Definition

A weak ultracategory is a colax algebra for the relative ultrafilter 2-monad.

Definition

A weak ultracategory is a colax algebra for the relative ultrafilter 2-monad.

Explicitly, this means a category *C* equipped with:

1. a functor

$$(-)^C: [X,C] \longrightarrow [\beta X,C]$$

for each set X;

Definition

A weak ultracategory is a colax algebra for the relative ultrafilter 2-monad.

Explicitly, this means a category *C* equipped with:

1. a functor

$$(-)^C: [X, C] \longrightarrow [\beta X, C]$$

for each set X;

2. a natural transformation

$$\Gamma_h \colon h^C \eta_X \implies h$$

for each $h: X \to C$;

Definition

A weak ultracategory is a colax algebra for the relative ultrafilter 2-monad.

Explicitly, this means a category *C* equipped with:

1. a functor

$$(-)^C: [X,C] \longrightarrow [\beta X,C]$$

for each set X;

2. a natural transformation

$$\Gamma_h \colon h^C \eta_X \implies h$$

for each $h: X \to C$;

Definition

A weak ultracategory is a colax algebra for the relative ultrafilter 2-monad.

Explicitly, this means a category C equipped with:

1. a functor

$$(-)^C: [X, C] \longrightarrow [\beta X, C]$$

for each set X;

2. a natural transformation

$$\Gamma_h \colon h^C \eta_X \implies h$$

for each $h: X \to C$;

Definition

A weak ultracategory is a colax algebra for the relative ultrafilter 2-monad.

Explicitly, this means a category C equipped with:

1. a functor

$$(-)^C: [X,C] \longrightarrow [\beta X,C]$$

for each set X;

2. a natural transformation

$$\Gamma_h \colon h^C \eta_X \implies h$$

for each $h: X \to C$;

3. a natural transformation

$$\Delta_{h,k} \colon h^{C} k^{*} \implies (h^{C} k)^{C}$$

for each $h: X \to C, k: Y \to \beta X$,

Definition

A weak ultracategory is a colax algebra for the relative ultrafilter 2-monad.

Explicitly, this means a category C equipped with:

1. a functor

$$(-)^C: [X,C] \longrightarrow [\beta X,C]$$

for each set X;

2. a natural transformation

$$\Gamma_h \colon h^C \eta_X \implies h$$

for each $h: X \to C$;

3. a natural transformation

$$\Delta_{h,k} \colon h^{C} k^{*} \implies (h^{C} k)^{C}$$

for each $h: X \to C, k: Y \to \beta X$,

satisfying some coherence conditions.

Definition

A weak ultracategory is a colax algebra for the relative ultrafilter 2-monad.

Explicitly, this means a category C equipped with:

1. a functor

$$(-)^C \colon [X,C] \longrightarrow [\beta X,C]$$

for each set X;

2. a natural transformation

$$\Gamma_h \colon h^C \eta_X \implies h$$

for each $h: X \to C$;

3. a natural transformation

$$\Delta_{h,k} \colon h^{C} k^{*} \implies (h^{C} k)^{C}$$

for each $h: X \to C, k: Y \to \beta X$,

satisfying some coherence conditions.

Remark

Lurie's definition is the same, but he also requires each counitor Γ_h and some coassociators $\Delta_{h,k}$ to be invertible.

However:

- ultrafunctors coincide with pseudomorphisms;
- left ultrafunctors coincide with colax morphisms.

For a weak ultracategory C, the functors $(-)^C : [X, C] \to [\beta X, C]$ define a lax transformation $(-)^C : [J-, C] \Longrightarrow [J\beta-, C]$

For a weak ultracategory C, the functors $(-)^C : [X, C] \rightarrow [\beta X, C]$ define a lax transformation

$$(-)^C: [J-,C] \Longrightarrow [J\beta-,C]$$

where, for 2-functors $F, G: \mathcal{B} \to \mathcal{A}$, a lax transformation $\sigma: F \Rightarrow G$ is given by

- ▶ a 1-cell σ_b : $Fb \to Gb$ for each $b \in \mathcal{B}$,
- ▶ and a 2-cell

$$\begin{array}{ccc}
Fb & \xrightarrow{\sigma_b} & Gb \\
Ff \downarrow & & \downarrow Gf \\
Fb' & \xrightarrow{\sigma_{h'}} & Gb'
\end{array}$$

for each 1-cell $f: b \to b'$ in \mathcal{B} ,

satisfying some coherence and naturality conditions. Reversing the 2-cells we obtain an *oplax* transformation.

For a weak ultracategory C, the functors $(-)^C : [X, C] \to [\beta X, C]$ define a *lax transformation* $(-)^C : [J-, C] \Longrightarrow [J\beta-, C]$

To exhibit C as an algebra for a monad $\widetilde{\beta}$ on CAT, such a transformation should correspond to a functor

$$\widetilde{\beta}C \longrightarrow C$$

For a weak ultracategory C, the functors $(-)^C \colon [X,C] \to [\beta X,C]$ define a *lax transformation*

$$(-)^C: [J-,C] \Longrightarrow [J\beta-,C]$$

To exhibit C as an algebra for a monad $\widetilde{\beta}$ on CAT, such a transformation should correspond to a functor

$$\widetilde{\beta}C \longrightarrow C$$

Definition

For 2-functors $J, T : \mathcal{B} \to \mathcal{A}$, a left oplax Kan extension of T along J is a 2-functor $\widetilde{T} : \mathcal{A} \to \mathcal{A}$ such that for all $a, a' \in \mathcal{A}$ there are natural isomorphisms:

$$\mathsf{Lax}\left[\mathcal{B}^{\mathsf{op}},\mathsf{CAT}\right]\left(\mathcal{A}(J-,a),\mathcal{A}(T-,a')\right)\cong\mathcal{A}(\widetilde{T}a,a')$$

For a weak ultracategory C, the functors $(-)^C \colon [X,C] \to [\beta X,C]$ define a lax transformation

$$(-)^C: [J-,C] \Longrightarrow [J\beta-,C]$$

To exhibit C as an algebra for a monad $\widetilde{\beta}$ on CAT, such a transformation should correspond to a functor

$$\widetilde{\beta}C \longrightarrow C$$

Definition

For 2-functors $J, T : \mathcal{B} \to \mathcal{A}$, a left oplax Kan extension of T along J is a 2-functor $\widetilde{T} : \mathcal{A} \to \mathcal{A}$ such that for all $a, a' \in \mathcal{A}$ there are natural isomorphisms:

$$\mathsf{Lax}\left[\mathcal{B}^\mathsf{op},\mathsf{CAT}\right]\left(\mathcal{A}(J-,a),\mathcal{A}(T-,a')\right)\cong\mathcal{A}(\widetilde{T}a,a')$$

In particular, T comes equipped with an oplax

transformation $\zeta \colon T \Rightarrow \widetilde{T} \circ J$

For a weak ultracategory C, the functors $(-)^C \colon [X,C] \to [\beta X,C]$ define a lax transformation

$$(-)^C: [J-,C] \Longrightarrow [J\beta-,C]$$

To exhibit C as an algebra for a monad $\widetilde{\beta}$ on CAT, such a transformation should correspond to a functor

$$\widetilde{\beta}C \longrightarrow C$$

Definition

For 2-functors $J, T: \mathcal{B} \to \mathcal{A}$, a left oplax Kan extension of T along J is a 2-functor $\widetilde{T}: \mathcal{A} \to \mathcal{A}$ such that for all $a, a' \in \mathcal{A}$ there are natural isomorphisms:

$$\mathsf{Lax}\left[\mathcal{B}^\mathsf{op},\mathsf{CAT}\right]\left(\mathcal{A}(J-,a),\mathcal{A}(T-,a')\right)\cong\mathcal{A}(\widetilde{T}a,a')$$

In particular, \widetilde{T} comes equipped with an oplax transformation $\zeta\colon T\Rightarrow \widetilde{T}\circ J$ such that every other oplax transformation $\sigma\colon T\Rightarrow S\circ J$

For a weak ultracategory C, the functors $(-)^C \colon [X,C] \to [\beta X,C]$ define a lax transformation

$$(-)^C: [J-,C] \Longrightarrow [J\beta-,C]$$

To exhibit C as an algebra for a monad $\widetilde{\beta}$ on CAT, such a transformation should correspond to a functor

 $\widetilde{\beta}C \longrightarrow C$

Definition

For 2-functors $J, T: \mathcal{B} \to \mathcal{A}$, a *left oplax Kan extension* of T along J is a 2-functor $\widetilde{T}: \mathcal{A} \to \mathcal{A}$ such that for all $a, a' \in \mathcal{A}$ there are natural isomorphisms:

$$\mathsf{Lax}\left[\mathcal{B}^\mathsf{op},\mathsf{CAT}\right]\left(\mathcal{A}(J-,a),\mathcal{A}(T-,a')\right)\cong\mathcal{A}(\widetilde{T}a,a')$$

In particular, \widetilde{T} comes equipped with an oplax transformation $\zeta\colon T\Rightarrow \widetilde{T}\circ J$ such that every other oplax transformation $\sigma\colon T\Rightarrow S\circ J$ factors uniquely through ζ by a strict transformation $\underline{\sigma}\colon \widetilde{T}\Rightarrow S$

For a weak ultracategory C, the functors $(-)^C \colon [X,C] \to [\beta X,C]$ define a *lax transformation*

$$(-)^C: [J-,C] \Longrightarrow [J\beta-,C]$$

To exhibit C as an algebra for a monad $\widetilde{\beta}$ on CAT, such a transformation should correspond to a functor $\widetilde{\beta}C\longrightarrow C$

Definition

For 2-functors $J, T: \mathcal{B} \to \mathcal{A}$, a left oplax Kan extension of T along J is a 2-functor $\widetilde{T}: \mathcal{A} \to \mathcal{A}$ such that for all $a, a' \in \mathcal{A}$ there are natural isomorphisms:

$$\mathsf{Lax}\left[\mathcal{B}^{\mathsf{op}},\mathsf{CAT}\right]\left(\mathcal{A}(J-,a),\mathcal{A}(T-,a')\right)\cong\mathcal{A}(\widetilde{T}a,a')$$

In particular, \widetilde{T} comes equipped with an oplax transformation $\zeta\colon T\Rightarrow \widetilde{T}\circ J$ such that every other oplax transformation $\sigma\colon T\Rightarrow S\circ J$ factors uniquely through ζ by a strict transformation $\underline{\sigma}\colon \widetilde{T}\Rightarrow S$. In other words:

$$\operatorname{\mathsf{Str}}\left[\mathcal{A},\mathcal{A}\right](\widetilde{T},S)\cong\operatorname{\mathsf{Oplax}}\left[\mathcal{B},\mathcal{A}\right](T,S\circ J)$$

The main result

Theorem (T. & Wrigley)

Let $\langle T, \eta, (-)^* \rangle$ be a J-relative 2-monad on CAT. Suppose that:

- 1. J is 2-fully-faithful,
- 2. \mathcal{B} has a terminal object 1 that is preserved by J,
- 3. \mathcal{B} has oplax colimits of shape $(Jb)^{op}$ for $b \in \mathcal{B}$, which J preserves.

The left oplax Kan extension \widetilde{T} of T along J carries the structure of a pseudomonad on CAT such that the 2-categories $\operatorname{ColaxAlg}_J(T)$ and $\operatorname{ColaxAlg}(\widetilde{T})$ are isomorphic.

T. and Wrigley, Ultracategories via Kan extensions of relative monads, 2025

For $\mathcal{A}=\mathsf{CAT}$, left oplax Kan extensions exist and we can describe them explicitly. For concreteness, we describe here the extension of $\beta\colon\mathsf{Set}\to\mathsf{CAT}$ along $\mathsf{Set}\hookrightarrow\mathsf{CAT}$.

For $\mathcal{A}=\mathsf{CAT}$, left oplax Kan extensions exist and we can describe them explicitly. For concreteness, we describe here the extension of $\beta\colon\mathsf{Set}\to\mathsf{CAT}$ along $\mathsf{Set}\hookrightarrow\mathsf{CAT}$.

For a category C:

- **b** objects of $\widetilde{\beta}C$ are triples of:
 - 1. a set *X*,
 - 2. a functor $h: X \to C$,
 - 3. and an ultrafilter $\nu \in \beta X$;

For $\mathcal{A}=\mathsf{CAT}$, left oplax Kan extensions exist and we can describe them explicitly. For concreteness, we describe here the extension of $\beta\colon\mathsf{Set}\to\mathsf{CAT}$ along $\mathsf{Set}\hookrightarrow\mathsf{CAT}$.

For a category C:

- **b** objects of $\widetilde{\beta}C$ are triples of:
 - 1. a set X,
 - 2. a functor $h: X \to C$,
 - 3. and an ultrafilter $\nu \in \beta X$;
- ▶ morphisms $(X, h, \nu) \rightarrow (X', h', \nu')$ in $\widetilde{T}C$ are pairs of:
 - 1. a function $f: X' \to X$ such that $\beta(f)(\nu') = \nu$,
 - 2. and a natural transformation $\alpha \colon h \circ f \Rightarrow h'$.

For $\mathcal{A}=\mathsf{CAT}$, left oplax Kan extensions exist and we can describe them explicitly. For concreteness, we describe here the extension of $\beta\colon\mathsf{Set}\to\mathsf{CAT}$ along $\mathsf{Set}\hookrightarrow\mathsf{CAT}$.

For a category C:

- ightharpoonup objects of $\widetilde{\beta}C$ are triples of:
 - 1. a set *X*,
 - 2. a functor $h: X \to C$,
 - 3. and an ultrafilter $\nu \in \beta X$;
- ▶ morphisms $(X, h, \nu) \rightarrow (X', h', \nu')$ in $\widetilde{T}C$ are pairs of:
 - 1. a function $f: X' \to X$ such that $\beta(f)(\nu') = \nu$,
 - 2. and a natural transformation α : $h \circ f \Rightarrow h'$.

If C is a weak ultracategory, recall that each functor $h: X \to C$ extends to a functor $h^C: \beta X \to C$. The corresponding colax $\widetilde{\beta}$ -algebra functor $\widetilde{\beta}C \to C$ then maps

$$(X, h: X \to C, \nu \in \beta X) \mapsto h^{C}(\nu).$$

In the case of β : Set \rightarrow CAT, the inclusion Set \hookrightarrow CAT:

- 1. is fully-faithful,
- 2. preserves the terminal object 1;
- 3. preserves small coproducts.

In the case of β : Set \rightarrow CAT, the inclusion Set \hookrightarrow CAT satisfies our assumptions.

Therefore, $\widetilde{\beta}$ carries the structure of a pseudomonad $\langle \widetilde{\beta}, \eta^{\sharp}, \mu^{\sharp} \rangle$ on CAT, which we now describe.

A pseudomonad structure on β

In the case of $\beta\colon\mathsf{Set}\to\mathsf{CAT}$, the inclusion $\mathsf{Set}\hookrightarrow\mathsf{CAT}$ satisfies our assumptions. Therefore, $\widetilde{\beta}$ carries the structure of a pseudomonad $\langle\widetilde{\beta},\eta^\sharp,\mu^\sharp\rangle$ on CAT, which we now describe.

▶ On objects, the unit $\eta_C^{\sharp} : C \to \widetilde{\beta}C$ maps $c \in C$ to $(1, c : 1_{\mathsf{CAT}} \to C, * \in \beta 1)$.

In the case of $\beta \colon \mathsf{Set} \to \mathsf{CAT}$, the inclusion $\mathsf{Set} \hookrightarrow \mathsf{CAT}$ satisfies our assumptions.

Therefore, $\widetilde{\beta}$ carries the structure of a pseudomonad $\langle \widetilde{\beta}, \eta^{\sharp}, \mu^{\sharp} \rangle$ on CAT, which we now describe.

- ▶ On objects, the unit $\eta_C^{\sharp}: C \to \widetilde{\beta}C$ maps $c \in C$ to $(1, c: 1_{CAT} \to C, * \in \beta 1)$.
- ▶ On objects, the multiplication $\mu_C^{\sharp} : \widetilde{\beta}^2 C \to \widetilde{\beta} C$ acts by

$$\mu_{\mathcal{C}}^{\sharp}(X, h: X \to \widetilde{\beta}\mathcal{C}, \nu \in \beta X) = (-, -, -).$$

In the case of $\beta \colon \mathsf{Set} \to \mathsf{CAT}$, the inclusion $\mathsf{Set} \hookrightarrow \mathsf{CAT}$ satisfies our assumptions.

Therefore, $\widetilde{\beta}$ carries the structure of a pseudomonad $\langle \widetilde{\beta}, \eta^{\sharp}, \mu^{\sharp} \rangle$ on CAT, which we now describe.

- ▶ On objects, the unit $\eta_C^{\sharp}: C \to \widetilde{\beta}C$ maps $c \in C$ to $(1, c: 1_{CAT} \to C, * \in \beta 1)$.
- ▶ On objects, the multiplication $\mu_C^{\sharp} : \widetilde{\beta}^2 C \to \widetilde{\beta} C$ acts by

$$\mu_{\mathcal{C}}^{\sharp}(X,h\colon X\to \widetilde{\beta}\mathcal{C},\nu\in\beta X)=(-,-,-).$$

For an element $x \in X$, write $h(x) = (Y_x, k_x : Y_x \to C, \theta_x \in \beta Y_x) \in \widetilde{\beta} C$.

In the case of $\beta \colon \mathsf{Set} \to \mathsf{CAT}$, the inclusion $\mathsf{Set} \hookrightarrow \mathsf{CAT}$ satisfies our assumptions.

Therefore, $\widetilde{\beta}$ carries the structure of a pseudomonad $\langle \widetilde{\beta}, \eta^{\sharp}, \mu^{\sharp} \rangle$ on CAT, which we now describe.

- ▶ On objects, the unit $\eta_C^{\sharp}: C \to \widetilde{\beta}C$ maps $c \in C$ to $(1, c: 1_{\mathsf{CAT}} \to C, * \in \beta 1)$.
- ▶ On objects, the multiplication $\mu_C^{\sharp} : \widetilde{\beta}^2 C \to \widetilde{\beta} C$ acts by

$$\mu_C^{\sharp}(X, h: X \to \widetilde{\beta}C, \nu \in \beta X) = (Y, -, -).$$

For an element $x \in X$, write $h(x) = (Y_x, k_x : Y_x \to C, \theta_x \in \beta Y_x) \in \widetilde{\beta} C$.

1. Let Y be the coproduct $\coprod_{x \in X} Y_x$, with inclusions $\{i_x \colon Y_x \hookrightarrow Y\}_{x \in X}$.

In the case of $\beta \colon \mathsf{Set} \to \mathsf{CAT}$, the inclusion $\mathsf{Set} \hookrightarrow \mathsf{CAT}$ satisfies our assumptions.

Therefore, $\widetilde{\beta}$ carries the structure of a pseudomonad $\langle \widetilde{\beta}, \eta^{\sharp}, \mu^{\sharp} \rangle$ on CAT, which we now describe.

- ▶ On objects, the unit $\eta_C^{\sharp}: C \to \widetilde{\beta}C$ maps $c \in C$ to $(1, c: 1_{\mathsf{CAT}} \to C, * \in \beta 1)$.
- ▶ On objects, the multiplication $\mu_C^{\sharp} : \widetilde{\beta}^2 C \to \widetilde{\beta} C$ acts by

$$\mu_{C}^{\sharp}(X, h: X \to \widetilde{\beta}C, \nu \in \beta X) = (Y, k: Y \to C, -).$$

For an element $x \in X$, write $h(x) = (Y_x, k_x : Y_x \to C, \theta_x \in \beta Y_x) \in \widetilde{\beta} C$.

- 1. Let Y be the coproduct $\coprod_{x \in X} Y_x$, with inclusions $\{i_x \colon Y_x \hookrightarrow Y\}_{x \in X}$.
- 2. Let $k: Y \to C$ be the unique functor determined by $\{k_x: Y_x \to C\}_{x \in X}$, i.e. $k(y \in Y_x) := k_x(y)$.

In the case of $\beta \colon \mathsf{Set} \to \mathsf{CAT}$, the inclusion $\mathsf{Set} \hookrightarrow \mathsf{CAT}$ satisfies our assumptions.

Therefore, $\widetilde{\beta}$ carries the structure of a pseudomonad $\langle \widetilde{\beta}, \eta^{\sharp}, \mu^{\sharp} \rangle$ on CAT, which we now describe.

- ▶ On objects, the unit $\eta_C^{\sharp}: C \to \widetilde{\beta}C$ maps $c \in C$ to $(1, c: 1_{\mathsf{CAT}} \to C, * \in \beta 1)$.
- ▶ On objects, the multiplication $\mu_C^{\sharp}: \widetilde{\beta}^2C \to \widetilde{\beta}C$ acts by

$$\mu_{\mathcal{C}}^{\sharp}(X,h\colon X\to \widetilde{\beta}\mathcal{C},\nu\in\beta X)=(Y,k\colon Y\to \mathcal{C},q^*(\nu)).$$

For an element $x \in X$, write $h(x) = (Y_x, k_x : Y_x \to C, \theta_x \in \beta Y_x) \in \widetilde{\beta} C$.

- 1. Let Y be the coproduct $\coprod_{x \in X} Y_x$, with inclusions $\{i_x \colon Y_x \hookrightarrow Y\}_{x \in X}$.
- 2. Let $k: Y \to C$ be the unique functor determined by $\{k_x: Y_x \to C\}_{x \in X}$, i.e. $k(y \in Y_x) := k_x(y)$.
- 3. The functor $q: X \to \beta Y$ defined by $x \mapsto \beta i_x(\theta_x)$ extends to a functor $q^*: \beta X \to \beta Y$, so that we can consider $q^*(\nu) \in \beta Y$. Concretely, for $S \subseteq Y$,

$$S \in q^*(\nu) \iff \{x \in X \mid S \cap Y_x \in \theta_x\} \in \nu$$

Applying our result to the relative ultrafilter 2-monad, we conclude that weak ultracategories are pseudomonadic over CAT.

Corollary

Weak ultracategories are the colax algebras for the pseudomonad $\widetilde{\beta}$ on CAT where:

- ▶ β : Set \rightarrow Set is the right Kan extension of FinSet \hookrightarrow Set along itself;
- ▶ $\widetilde{\beta}$: CAT \rightarrow CAT is the left oplax Kan extension of β : Set \rightarrow CAT along Set \hookrightarrow CAT.

Future directions

- We can apply our result to other monads of interest: in particular, the upper prime filter monad B: Pos → Pos whose algebras are compact ordered spaces.
 Prime categories, i.e. the colax algebras for the relative upper prime filter 2-monad B: Pos → CAT, are then the colax algebras for B: CAT → CAT.
 - → Connections with *positive model theory*
 - ightarrow Towards a Priestley-like duality for first-order logic

Future directions

- We can apply our result to other monads of interest: in particular, the upper prime filter monad B: Pos → Pos whose algebras are compact ordered spaces.
 Prime categories, i.e. the colax algebras for the relative upper prime filter 2-monad B: Pos → CAT, are then the colax algebras for B: CAT → CAT.
 - ightarrow Connections with positive model theory
 - → Towards a Priestley-like duality for first-order logic
- Assuming they exist, left oplax Kan extensions along $J \colon \mathcal{B} \to \mathcal{A}$ determine a 2-adjunction

Can we find sufficient hypotheses on A to obtain an abstract 'unrelativisation' procedure for J-relative pseudomonads?

→ Connections with skew-monoidal 2-categories and monoidal 2-functors

Thank you!

Ultracategories via Kan extensions of relative monads,

Umberto Tarantino and Joshua Wrigley, 2025, arXiv:2506.09788

Weak ultracategories are ultracategories

Lurie's ultracategories are a (proper) subclass of weak ultracategories.

However, Lurie's ultrafunctors and left ultrafunctors coincide with pseudomorphisms and colax morphisms, so that we have 2-fully-faithful embeddings:

$$\mathsf{Ult} \hookrightarrow \mathsf{WeakUlt}^{\mathsf{pseudo}} \qquad \mathsf{Ult}^\mathsf{L} \hookrightarrow \mathsf{WeakUlt}^{\mathsf{colax}}$$

This ensures that weak ultracategories are a good axiomatisation of ultracategories.

Theorem (Lurie)

For a small pretopos P, the evaluation functor $ev: P \to [Mod(P), Set]$ induces equivalences of categories:

- 1. $P \simeq \mathsf{WeakUlt}^{\mathsf{pseudo}}(\mathsf{Mod}(P),\mathsf{Set});$
- 2. $Sh(P) \simeq WeakUlt^{colax}(Mod(P), Set)$.

In particular, Mod: $\mathsf{Pretop}^\mathsf{op} \hookrightarrow \mathsf{WeakUlt}^\mathsf{pseudo}$ is 2-fully-faithful.

For $\mathcal{A}=\mathsf{CAT}$, left oplax Kan extensions exist and we can describe them explicitly. For concreteness, consider $\beta\colon\mathsf{Set}\to\mathsf{CAT}$. For a category C:

- ▶ objects of TC are triples $(b \in \mathcal{B}, h: Jb \to C, \nu \in Tb)$;
- ▶ morphisms $(b, h, \nu) \rightarrow (b', h', \nu')$ in $\widetilde{T}C$ are triples of
 - 1. a 1-cell $f: b' \to b$ in \mathcal{B} ,
 - 2. a natural transformation α : $h \circ Jf \Rightarrow h'$,
 - 3. and an arrow $\varphi \colon \nu \to Tf(\nu')$ in Tb,

modulo the equivalence relation generated by $(f, \alpha_f, \varphi_f) \sim (g, \alpha_g, \varphi_g)$ if there exists a 2-cell $\sigma: f \Rightarrow g$ in \mathcal{B} such that

A pseudomonad structure on T

Under our assumptions, \widetilde{T} carries the structure of a pseudomonad $\langle \widetilde{T}, \eta^{\sharp}, \mu^{\sharp} \rangle$ on CAT.

- $lackbox{ On objects, the unit } \eta_{\mathcal{C}}^{\sharp} \colon \mathcal{C} \to \widetilde{\mathcal{T}}\mathcal{C} \text{ maps } c \in \mathcal{C} \text{ to } (1_{\mathcal{B}}, c \colon 1_{\mathsf{CAT}} \to \mathcal{C}, \eta_{1_{\mathcal{B}}}(*)).$
- ▶ On objects, the multiplication $\mu_C^{\sharp} : \widetilde{T}^2C \to \widetilde{T}C$ acts by

$$\mu_C^{\sharp}(b,h: Jb \to \widetilde{T}C, \nu) = (\ell, a: J\ell \to C, Q^*\nu).$$

For an object $x \in Jb$, write $h(x) = (Rx, a_x: JRx \to C, \nu_x)$.

For an arrow $g: x \to y \in Jb$, write $h(g) = (Rg, \gamma_g: a_x \circ JRg \Rightarrow a_y, \psi_g)$.

 $R: (Jb)^{op} \to \mathcal{B}$, with universal cocone: an oplax cocone of $JR: (Jb)^{op} \to CAT$

1. Let $\ell \in \mathcal{B}$ be the oplax colimit of 2. As J preserves oplax colimits and C is

$$Rx \stackrel{Rg}{\longleftarrow} Ry$$

$$JRx \leftarrow \begin{matrix} JRg \\ \hline \end{matrix} JRy$$

there is a universal functor $a: J\ell \to C$.

3. The map $x \mapsto Tc_x(\nu_x)$ lifts to a functor $Q: Jb \to T\ell$, which extends to a functor $Q^* \colon Tb \to T\ell$ via the monad structure of T, so that we can consider $Q^*\nu \in T\ell$.