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Compact Hausdorff spaces and the ultrafilter monad

Compact Hausdorff spaces enjoy two remarkable properties:

1. they are algebras for the ultrafilter monad ⟨β, η, µ⟩ on Set;

2. the functor β : Set → Set is a right Kan extension.

FinSet Set

Set β

ρ

In no-iteration form, the monad ⟨β, η, µ⟩ can be equivalently described by

▶ a function ηX : X → βX for each set X ,

▶ and a function (−)∗ : Set(Y , βX ) → Set(βY , βX ) for each pair of sets X ,Y ,

satisfying equations. In the same spirit, a β-algebra K is equivalently described by a

function

(−)K : Set(Y ,K ) −→ Set(βY ,K )

for each set Y , satisfying equations. Intuitively, hK (ν) ∈ K is the topological limit of a

family h : Y → K of points of K with respect to the ultrafilter ν ∈ βY .
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Ultracategories

Ultracategories were introduced by Makkai as categories endowed with structure meant

to abstract the notion of ultraproducts from model theory. Different definitions exist,

but the core is that of a category C with a functor

(−)C : [Y ,C ] −→ [βY ,C ]

for each set Y , which Makkai calls a pre-ultracategory. Intuitively, hC (ν) is the

‘ultraproduct’ of a family h : Y → C of objects of C with respect to the ultrafilter

ν ∈ βY .

Makkai, Stone duality for first-order logic, 1987

Lurie, Ultracategories, 2018

Main example

Mod(T), for a coherent theory T, is an ultracategory: (−)Mod(T) maps a tuple

(My )y∈Y of models and an ultrafilter ν ∈ βY to the actual ultraproduct
∏

ν My .
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Our contribution

Question

Ultracategories categorify compact Hausdorff spaces. Can we make an axiomatisation

of the notion of ultracategory emerge just as naturally, i.e. as

1. algebras for a pseudomonad on CAT,

2. whose underlying pseudofunctor is universally-induced by β : Set → Set?
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Ultracategories categorify compact Hausdorff spaces. Can we make an axiomatisation

of the notion of ultracategory emerge just as naturally, i.e. as

1. algebras for a pseudomonad on CAT,

2. whose underlying pseudofunctor is universally-induced by β : Set → Set?

“[Both Makkai’s and Lurie’s definitions of an

ultracategory are] very heavy, and come

together with axioms whose choice seems

quite arbitrary.”

Di Liberti, The geometry of coherent topoi and

ultrastructures, 2022

“Ultraproducts are categorically inevitable.”

Leinster, Codensity and the ultrafilter monad,

2018
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Ultracategories categorify compact Hausdorff spaces. Can we make an axiomatisation

of the notion of ultracategory emerge just as naturally, i.e. as

1. algebras for a pseudomonad on CAT,

2. whose underlying pseudofunctor is universally-induced by β : Set → Set?

Earlier work in this direction tries to tackle the problem directly, by defining suitable

pseudomonads on CAT.

Marmolejo, Ultraproducts and continuous families of models, 1995

Rosolini, Ultracompletions, talk at CT2024

Hamad, Ultracategories as colax algebras for a pseudo-monad on CAT, 2025
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Our contribution

Question

Ultracategories categorify compact Hausdorff spaces. Can we make an axiomatisation

of the notion of ultracategory emerge just as naturally, i.e. as

1. algebras for a pseudomonad on CAT,

2. whose underlying pseudofunctor is universally-induced by β : Set → Set?

Our answer

We will make an axiomatisation emerge by putting ultracategories in the context of

relative monad theory. The starting point is that Lurie’s definition is almost that of a

colax algebra for a relative 2-monad over CAT.

Altenkirch, Chapman, Uustalu, Monads need not be endofunctors, 2015

Fiore, Gambino, Hyland, Winskel, Relative pseudomonads, Kleisli bicategories and substitution

monoidal structures, 2018
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Relative 2-monads

Definition

Let J : B → CAT be a 2-functor.

A J-relative 2-monad on CAT is given by

1. a category Tb, for each b ∈ B,

2. a functor ηb : Jb → Tb for each b ∈ B,

3. and a functor (−)∗ : [Jb,Tb′] → [Tb,Tb′] for

each pair b, b′ ∈ B,

satisfying the conditions:

a. η∗b = idTb,

b. f ∗ ◦ ηb = f ,

c. (f ∗ ◦ g)∗ = f ∗ ◦ g∗.

The relative ultrafilter 2-monad

If J is 2-fully-faithful, every 2-monad ⟨T , η, (−)∗⟩ on B yields a J-relative 2-monad

⟨JT , Jη, J(−)∗J-1⟩ on CAT. In particular, considering the inclusion Set ↪→ CAT, the

ultrafilter monad β : Set → Set yields the relative ultrafilter 2-monad β : Set → CAT.
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Weak ultracategories I

Definition

A weak ultracategory is a colax algebra for the relative ultrafilter 2-monad.

Explicitly, this means a category C equipped with:

1. a functor

(−)C : [X ,C ] −→ [βX ,C ]

for each set X ;

2. a natural transformation

Γh : h
CηX =⇒ h

for each h : X → C ;

3. a natural transformation

∆h,k : h
Ck∗ =⇒ (hCk)C

for each h : X → C , k : Y → βX ,

βY

βX

X C

k∗ (hCk)C

ηY

k

hCηX

h

Γh

∆h,k
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2. a natural transformation

Γh : h
CηX =⇒ h

for each h : X → C ;

3. a natural transformation

∆h,k : h
Ck∗ =⇒ (hCk)C

for each h : X → C , k : Y → βX ,

satisfying some coherence conditions.

Remark

Lurie’s definition is the same, but he also

requires each counitor Γh and some

coassociators ∆h,k to be invertible.

However:

▶ ultrafunctors coincide with

pseudomorphisms;

▶ left ultrafunctors coincide with colax

morphisms.
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Left oplax Kan extensions

For a weak ultracategory C , the

functors (−)C : [X ,C ] → [βX ,C ]

define a lax transformation

(−)C : [J−,C ] =⇒ [Jβ−,C ]

To exhibit C as an algebra for a monad

β̃ on CAT, such a transformation

should correspond to a functor

β̃C −→ C

Definition

For 2-functors J,T : B → A, a left oplax Kan extension of T along J is a 2-functor

T̃ : A → A such that for all a, a′ ∈ A there are natural isomorphisms:

Lax [Bop,CAT]
(
A(J−, a),A(T−, a′)

) ∼= A(T̃ a, a′)

In particular, T̃ comes equipped with an oplax

transformation ζ : T ⇒ T̃ ◦ J such that every other oplax

transformation σ : T ⇒ S ◦ J factors uniquely through ζ by

a strict transformation σ : T̃ ⇒ S . In other words:

Str [A,A] (T̃ ,S) ∼= Oplax [B,A] (T , S ◦ J)

B A

A

T

J

S

T̃ ∀σ

ζ

∃!σ
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To exhibit C as an algebra for a monad

β̃ on CAT, such a transformation

should correspond to a functor

β̃C −→ C

where, for 2-functors F ,G : B → A, a lax transformation σ : F ⇒ G is given by

▶ a 1-cell σb : Fb → Gb for each b ∈ B,
▶ and a 2-cell

Fb Gb

Fb′ Gb′

σb

Ff
σf

Gf

σb′

for each 1-cell f : b → b′ in B,
satisfying some coherence and naturality conditions. Reversing the 2-cells we obtain an

oplax transformation.

Definition
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The main result

Theorem (T. & Wrigley)

Let ⟨T , η, (−)∗⟩ be a J-relative 2-monad on CAT. Suppose that:

1. J is 2-fully-faithful,

2. B has a terminal object 1 that is preserved by J,

3. B has oplax colimits of shape (Jb)op for b ∈ B, which J preserves.

The left oplax Kan extension T̃ of T along J carries the structure of a pseudomonad

on CAT such that the 2-categories ColaxAlgJ(T ) and ColaxAlg(T̃ ) are isomorphic.

T. and Wrigley, Ultracategories via Kan extensions of relative monads, 2025
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Left oplax Kan extensions in CAT

For A = CAT, left oplax Kan extensions exist and we can describe them explicitly. For

concreteness, we describe here the extension of β : Set → CAT along Set ↪→ CAT.

For a category C :

▶ objects of β̃C are triples of:

1. a set X ,

2. a functor h : X → C ,

3. and an ultrafilter ν ∈ βX ;

▶ morphisms (X , h, ν) → (X ′, h′, ν ′) in T̃C are pairs of:

1. a function f : X ′ → X such that β(f )(ν′) = ν,

2. and a natural transformation α : h ◦ f ⇒ h′.

If C is a weak ultracategory, recall that each functor h : X → C extends to a functor

hC : βX → C . The corresponding colax β̃-algebra functor β̃C → C then maps

(X , h : X → C , ν ∈ βX ) 7→ hC (ν).
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hC : βX → C . The corresponding colax β̃-algebra functor β̃C → C then maps

(X , h : X → C , ν ∈ βX ) 7→ hC (ν).
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A pseudomonad structure on β̃

In the case of β : Set → CAT, the inclusion Set ↪→ CAT:

1. is fully-faithful,

2. preserves the terminal object 1;

3. preserves small coproducts.

▶ On objects, the unit η♯C : C → β̃C maps c ∈ C to (1, c : 1CAT → C , ∗ ∈ β1).

▶ On objects, the multiplication µ♯C : β̃2C → β̃C acts by

µ♯C (X , h : X → β̃C , ν ∈ βX ) = (−,−,−).

For an element x ∈ X , write h(x) = (Yx , kx : Yx → C , θx ∈ βYx) ∈ β̃C .

1. Let Y be the coproduct
∐

x∈X Yx ,

with inclusions { ix : Yx ↪→ Y }x∈X .
2. Let k : Y → C be the unique functor

determined by { kx : Yx → C }x∈X ,
i.e. k(y ∈ Yx) := kx(y).

3. The functor q : X → βY defined by x 7→ βix(θx) extends to a functor

q∗ : βX → βY , so that we can consider q∗(ν) ∈ βY . Concretely, for S ⊆ Y ,

S ∈ q∗(ν) ⇐⇒ { x ∈ X | S ∩ Yx ∈ θx } ∈ ν
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Weak ultracategories II

Applying our result to the relative ultrafilter 2-monad, we conclude that weak

ultracategories are pseudomonadic over CAT.

Corollary

Weak ultracategories are the colax algebras for the pseudomonad β̃ on CAT where:

FinSet Set CAT

Set

CAT

β

β̃

ρ

ζ

▶ β : Set → Set is the right Kan extension of FinSet ↪→ Set along itself;

▶ β̃ : CAT → CAT is the left oplax Kan extension of β : Set → CAT along

Set ↪→ CAT.
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Future directions

▶ We can apply our result to other monads of interest: in particular, the upper

prime filter monad B : Pos → Pos whose algebras are compact ordered spaces.

Prime categories, i.e. the colax algebras for the relative upper prime filter 2-monad

B : Pos → CAT, are then the colax algebras for B̃ : CAT → CAT.

→ Connections with positive model theory

→ Towards a Priestley-like duality for first-order logic

▶ Assuming they exist, left oplax Kan extensions along J : B → A determine a

2-adjunction

Oplax [B,A] Str [A,A]

(̃−)

J∗
⊣

Can we find sufficient hypotheses on A to obtain an abstract ‘unrelativisation’

procedure for J-relative pseudomonads?

→ Connections with skew-monoidal 2-categories and monoidal 2-functors
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Thank you!

Ultracategories via Kan extensions of relative monads,

Umberto Tarantino and Joshua Wrigley, 2025, arXiv:2506.09788



Weak ultracategories are ultracategories

Lurie’s ultracategories are a (proper) subclass of weak ultracategories.

However, Lurie’s ultrafunctors and left ultrafunctors coincide with pseudomorphisms

and colax morphisms, so that we have 2-fully-faithful embeddings:

Ult ↪→ WeakUltpseudo UltL ↪→ WeakUltcolax

This ensures that weak ultracategories are a good axiomatisation of ultracategories.

Theorem (Lurie)

For a small pretopos P, the evaluation functor ev : P → [Mod(P),Set] induces

equivalences of categories:

1. P ≃ WeakUltpseudo (Mod(P),Set);

2. Sh(P) ≃ WeakUltcolax (Mod(P),Set).

In particular, Mod: Pretopop ↪→ WeakUltpseudo is 2-fully-faithful.



Left oplax Kan extensions in CAT

For A = CAT, left oplax Kan extensions exist and we can describe them explicitly. For

concreteness, consider β : Set → CAT. For a category C :

▶ objects of T̃C are triples (b ∈ B, h : Jb → C , ν ∈ Tb);

▶ morphisms (b, h, ν) → (b′, h′, ν ′) in T̃C are triples of

1. a 1-cell f : b′ → b in B,
2. a natural transformation α : h ◦ Jf ⇒ h′,

3. and an arrow φ : ν → Tf (ν′) in Tb,

modulo the equivalence relation generated by (f , αf , φf ) ∼ (g , αg , φg ) if there

exists a 2-cell σ : f ⇒ g in B such that

Jb′ Jb,

C

Jf

Jg

h′ h

Jσ

αg

(1)
=

Jb′ Jb

C

Jf

h′ h

αf

Tf (ν ′)

ν

Tg(ν ′)

(Tσ)ν′

φf

φg

(2)
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A pseudomonad structure on T̃

Under our assumptions, T̃ carries the structure of a pseudomonad ⟨T̃ , η♯, µ♯⟩ on CAT.

▶ On objects, the unit η♯C : C → T̃C maps c ∈ C to (1B, c : 1CAT → C , η1B(∗)).
▶ On objects, the multiplication µ♯C : T̃ 2C → T̃C acts by

µ♯C (b, h : Jb → T̃C , ν) = (ℓ, a : Jℓ→ C ,Q∗ν).

For an object x ∈ Jb, write h(x) = (Rx , ax : JRx → C , νx).

For an arrow g : x → y ∈ Jb, write h(g) = (Rg , γg : ax ◦ JRg ⇒ ay , ψg ).

1. Let ℓ ∈ B be the oplax colimit of

R : (Jb)op → B, with universal cocone:

Rx Ry

ℓ
cx

Rg

cy

λg

2. As J preserves oplax colimits and C is

an oplax cocone of JR : (Jb)op → CAT

JRx JRy

C ,
ax

JRg

ay

γg

there is a universal functor a : Jℓ→ C .

3. The map x 7→ Tcx(νx) lifts to a functor Q : Jb → T ℓ, which extends to a functor

Q∗ : Tb → T ℓ via the monad structure of T , so that we can consider Q∗ν ∈ T ℓ.
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