
A gentle introduction
to categorical realizability

Umberto Tarantino

IRIF, Université Paris Cité

Non-permanent members seminar
16th January 2025

Outline

1. Introduction

2. Towards a categorical model of realizability

3. Logic and computability in the effective topos

4. Conclusion

2 / 17

Introduction

3 / 17

History and motivation

Realizability was invented by Stephen Coole Kleene in 1945 in the
attempt to make the computational content of constructive proofs
explicit.
Concretely, realizability was the result of trying to find a
connection between intuitionistic number theory and the theory of
partial recursive functions.

Connectives and quantifiers, constructively

1. ∃y (y + 3 = 7)

2. ∀x ∃y (x ≥ 3 → y + 3 = x)

3. ∀x (∃y (2 · y = x) ∨ ¬∃y (2 · y = x))

4 / 17

History and motivation

“Intuitionistic number theory” is now known as Heyting arithmetic
(HA), the intuitionistic counterpart of Peano arithmetic (PA).
Every HA-theorem is also a PA-theorem, but not the converse; we
will see a counterexample later.
However, the two theories are equiconsistent.

Theorem (Gödel, 1933)
If HA is consistent, then so is PA.

4 / 17

The key idea

Notation
I Assume fixed a recursive bijection 〈−,−〉 : N2 −→ N.
I Assume fixed an enumeration of partial recursive functions

N⇀ N (equivalently, Turing machines), where { e } is the
e-th function.

I Given a partial recursive function f : N⇀ N, we write f (m)↓
to mean that f is defined on input m ∈ N.

5 / 17

The key idea

Kleene’s realizability associates to every sentence ϕ in the language
of arithmetic a set of natural numbers, called its realizers, where
e ∈ N realizes ϕ if:

I ϕ is atomic and it is true, and e = 0;

I ϕ = ψ ∧ χ and e = 〈m, n〉 where m realizes ψ and n realizes χ;

I ϕ = ψ ∨ χ and either e = 〈0,m〉 where m realizes ψ or e = 〈1, n〉
where n realizes χ;

I ϕ = ψ → χ and, for every realizer n of ψ, { e } (n) is defined and
realizes χ;

I ϕ = ∃xψ(x) and e = 〈m, n〉 where m realizes ψ(n);

I ϕ = ∀xψ(x) and, for all n ∈ N, { e } (n) is defined and realizes ψ(n).

5 / 17

The key idea

In particular, ⊥ is never realized.
So, ¬ϕ := ϕ→ ⊥ is realized if and only if ϕ does not have any
realizer, in which case every e ∈ N realizes ¬ϕ.
I This means that, for every sentence ϕ,

ϕ ∨ ¬ϕ
is always realized.

I Instead, if ϕ(x) has a free variable x ,
∀x (ϕ(x) ∨ ¬ϕ(x))

is realized only if there exists a recursive function that tells,
for each n ∈ N, which of ϕ(n) and ¬ϕ(n) is realized.

5 / 17

Soundness of the realizability interpretation

Theorem
If a first-order sentence is provable in HA, then it is realized.

The converse is false
Let T (x , y , t) be the predicate saying that the x-th Turing
machine halts on input y in less than t steps. A realizer of

ϕ := ∀x ∀y (∃t T (x , y , t) ∨ ¬∃t T (x , y , t))
would yield a recursive solution of the halting problem, which is
impossible. So:
I ϕ is provable in PA, but not realized nor provable in HA;
I ¬ϕ is realized, but not provable in HA nor in PA.

6 / 17

Towards a categorical model of realizability

7 / 17

PN-valued predicates

Abstracting the previous discussion, we define a PN-valued
predicate on a set X as a function X −→ PN.
Predicates on X can be preordered by letting ϕ `X ψ if

∃e ∈ N ∀x ∈ X ∀m ∈ ϕ(x) : { e } (m) ↓ ∧ { e } (m) ∈ ψ(x)
To model logical connectives, we can define:

I >(x) = N and ⊥(x) = ∅

I (ϕ ∧ ψ)(x) = { 〈m, n〉 | m ∈ ϕ(x) and n ∈ ψ(x) }

I (ϕ ∨ ψ)(x) = { 〈0,m〉 | m ∈ ϕ(x) } ∪ { 〈1, n〉 | n ∈ ψ(x) }

I (ϕ→ ψ)(x) = { e | ∀m ∈ ϕ(x) : { e } (m) ↓ ∧ { e } (m) ∈ ψ(x) }

8 / 17

Substitution and quantification

If f : X −→ Y is any function, then the map
f ∗ : P NY −→ P NX f ∗(ϕ) := ϕ ◦ f

preserves the order and the connectives.
Moreover, f ∗ has both a left and a right adjoint, ∃f and ∀f ,
defined for ϕ : X −→ P N by

(∃f ϕ)(y) :=
⋃

x :f (x)=y
ϕ(x) (∀f ϕ)(y) :=

⋂
x :f (x)=y

(N → ϕ(x))

which behave nicely with respect to substitution.
The association X 7→ (P NX ,`X) is known as the effective tripos.

9 / 17

The effective topos

The effective tripos gives rise to the effective topos Eff.
A topos is a category with enough categorical structure so that we
can interpret essentially all mathematics inside it.

Example
The category Set of sets and functions is a topos, where standard
mathematics takes place.

Internal vs external
The meaning of a sentence inside a topos can be externalized to a
statement about the standard topos.

10 / 17

Realizability inside Eff

Eff admits a natural numbers object, an object which behaves like
the set N. In particular, it is a model of the theory of arithmetic
inside Eff, so we denote it with N as well.

Theorem (Hyland, 1982)
In Eff, a first-order sentence in the language of arithmetic is true in
N if and only if it is realized.

Corollary
In Eff, N is a model of HA but not of PA.

Proof. N is a model of HA by soundness, but it doesn’t validate the
PA-theorem ∀x ∀y (∃t T (x , y , t) ∨ ¬∃t T (x , y , t)).

11 / 17

Logic and computability in the effective topos

12 / 17

Church’s thesis

Eff admits power objects, and in particular the object NN of
functions N −→ N. Church’s thesis is the principle stating that
every function N −→ N is recursive:
CT := ∀f ∈ NN ∃e ∈ N ∀m ∈ N : { e } (m) ↓ ∧ { e } (m) = f (m)

I CT is false in Set.

The halting function h : N −→ N defined by

h(〈e,m〉) :=

1 if { e } (m) ↓

0 otherwise

is famously not recursive.

I CT is trivially true in Eff.

In Eff, CT externally means that there exists a Turing machine M
which, given a Turing machine F computing a function
f : N −→ N, outputs a Turing machine computing f itself.

Such an M trivially exists: it just echoes the input back.

13 / 17

Church’s thesis

Eff admits power objects, and in particular the object NN of
functions N −→ N. Church’s thesis is the principle stating that
every function N −→ N is recursive:
CT := ∀f ∈ NN ∃e ∈ N ∀m ∈ N : { e } (m) ↓ ∧ { e } (m) = f (m)

I CT is trivially true in Eff.

In Eff, CT externally means that there exists a Turing machine M
which, given a Turing machine F computing a function
f : N −→ N, outputs a Turing machine computing f itself.
Such an M trivially exists: it just echoes the input back.

13 / 17

Church’s thesis

Why do the counterexamples in Set not work in Eff?
In particular, what happens to the halting function in Eff?

h(〈e,m〉) =

1 if { e } (m) ↓

0 otherwise

The problem is that
dom h = { 〈e,m〉 ∈ N | { e } (m) ↓ ∨ ¬{ e } (m) ↓ }

but we have already seen that
∀e ∈ N ∀m ∈ N ({ e } (m) ↓ ∨ ¬{ e } (m) ↓)

is not true in Eff, so h is not provably total!

13 / 17

Constant zero functions

Consider instead the statement that every function N −→ N is
constantly zero or not:

Z := ∀f ∈ NN ((∀m ∈ N f (m) = 0) ∨ ¬ (∀m ∈ N f (m) = 0))

I Z is trivially true in Set.

In Set, the validity of Z is just an instance of the law of excluded
middle.

I Z is false in Eff.

In Eff, Z externally means that there exists a Turing machine M
which, given a Turing machine F computing a function
f : N −→ N, tells whether f is the constant zero function or not.

Such an M does not exist: intuitively, the problem is that it would
take infinitely long to be sure that f is the constant zero function.

14 / 17

Constant zero functions

Consider instead the statement that every function N −→ N is
constantly zero or not:

Z := ∀f ∈ NN ((∀m ∈ N f (m) = 0) ∨ ¬ (∀m ∈ N f (m) = 0))

I Z is false in Eff.

In Eff, Z externally means that there exists a Turing machine M
which, given a Turing machine F computing a function
f : N −→ N, tells whether f is the constant zero function or not.
Such an M does not exist: intuitively, the problem is that it would
take infinitely long to be sure that f is the constant zero function.

14 / 17

Categoricity of Heyting arithmetic

PA is not categorical in Set, hence neither is HA.
The situation is quite different in Eff.

Theorem (van den Berg and van Oosten, 2014)
HA is categorical in Eff, with N as the unique model.

Corollary
PA does not have any model in Eff.

Corollary
Gödel’s completeness theorem fails in Eff.

15 / 17

Conclusion

16 / 17

Variations on the theme

I We can build a topos based on infinite Turing machines
(Hamkins and Lewis, 2000), where:

i. any function N −→ N is the constant zero function or not;
ii. there are no surjections N −→ R, but there is an injection

R −→ N (Bauer, 2014).

I More generally, we can build toposes out of variants of
Kleene’s realizability, such as:

i. a topos for function realizability, inside which every metric
space is separable (Bauer and Swan, 2018);

ii. toposes for extensional realizability, modified realizability,
Lifschitz realizability...

17 / 17

Thank you!

References
[1] J. M. E. Hyland, P. T. Johnstone, and A. W. Pitts. “Tripos

theory”. In: Mathematical Proceedings of the Cambridge Philo-
sophical Society (1980).

[2] J. M. E. Hyland. “The effective topos”. In: The L. E. J. Brouwer
Centenary Symposium. 1982.

[3] J. van Oosten. Realizability: an introduction to its categorical
side. Elsevier Science, 2008.

[4] B. van den Berg and J. van Oosten. “Arithmetic is categorical”.
2014.

[5] A. Bauer. “An injection from the Baire space to natural num-
bers”. In: Mathematical Structures in Computer Science (2014).

[6] I. Blechschmidt. “Exploring mathematical objects from custom-
tailored mathematical universes”. 2022.

